DAWN: Accelerating Point Cloud Object Detection via Object-Aware Partitioning and 3D Similarity-Based Filtering

As a fundamental perception task, 3D point cloud detection has become essential for applications in autonomous driving and robotics. However, point cloud detection faces significant challenges of high computational cost due to complex point processing operations. To address this issue, we propose DA...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autoři: Tang, Dongdong, Mao, Yu, Wang, Weilan, Guan, Nan, Kuo, Tei-Wei, Xue, Chun Jason
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As a fundamental perception task, 3D point cloud detection has become essential for applications in autonomous driving and robotics. However, point cloud detection faces significant challenges of high computational cost due to complex point processing operations. To address this issue, we propose DAWN, an acceleration framework for point cloud object detection that identifies partial similarities between adjacent frames and reduces computational cost by filtering redundant points. DAWN uses object-aware partitioning that defines boundaries based on previous detection results for localized similarity analysis. Additionally, it applies axis-sorted point selection to refine partitioning for point clouds with non-uniform distribution. An efficient 3D similarity algorithm then filters redundant points to reduce computational load. DAWN enables flexible latencyaccuracy trade-offs by tuning point filtering ratios. Experimental results show that DAWN achieves a 1.59 \times average speedup and up to 1.70 \times on state-of-the-art detection networks by filtering more than 50 \% of points on average, with negligible impact on accuracy.
DOI:10.1109/DAC63849.2025.11132746