DuQTTA: Dual Quantized Tensor-Train Adaptation with Decoupling Magnitude-Direction for Efficient Fine-Tuning of LLMs

Recent parameter-efficient fine-tuning (PEFT) techniques have enabled large language models (LLMs) to be efficiently fine-tuned for specific tasks, while maintaining model performance with minimal additional trainable parameters. However, existing PEFT techniques continue to face challenges in balan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autoři: Dong, Haoyan, Chen, Hai-Bao, Chang, Jingjing, Yang, Yixin, Gao, Ziyang, Ji, Zhigang, Wang, Runsheng, Huang, Ru
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.