A Scalable and Robust Compilation Framework for Emitter-Photonic Graph State

Quantum graph states are critical resources for various quantum algorithms, and also determine essential interconnections in distributed quantum computing. There are two schemes for generating graph states - probabilistic scheme and deterministic scheme. While the all-photonic probabilistic scheme h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autoři: Ren, Xiangyu, Huang, Yuexun, Liang, Zhiding, Barbalace, Antonio
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quantum graph states are critical resources for various quantum algorithms, and also determine essential interconnections in distributed quantum computing. There are two schemes for generating graph states - probabilistic scheme and deterministic scheme. While the all-photonic probabilistic scheme has garnered significant attention, the emitter-photonic deterministic scheme has been proved to be more scalable and feasible across several hardware platforms. This paper studies the GraphState-to-Circuit compilation problem in the context of the deterministic scheme. Previous research has primarily focused on optimizing individual circuit parameters, often neglecting the characteristics of quantum hardware, which results in impractical implementations. Additionally, existing algorithms lack scalability for larger graph sizes. To bridge these gaps, we propose a novel compilation framework that partitions the target graph state into subgraphs, compiles them individually, and subsequently combines and schedules the circuits to maximize emitter resource utilization. Furthermore, we incorporate local complementation to transform graph states and minimize entanglement overhead. Evaluation of our framework on various graph types demonstrates significant reductions in CNOT gates and circuit duration, up to 52% and 56%. Moreover, it enhances the suppression of photon loss, achieving improvements of up to \times 1.9.
AbstractList Quantum graph states are critical resources for various quantum algorithms, and also determine essential interconnections in distributed quantum computing. There are two schemes for generating graph states - probabilistic scheme and deterministic scheme. While the all-photonic probabilistic scheme has garnered significant attention, the emitter-photonic deterministic scheme has been proved to be more scalable and feasible across several hardware platforms. This paper studies the GraphState-to-Circuit compilation problem in the context of the deterministic scheme. Previous research has primarily focused on optimizing individual circuit parameters, often neglecting the characteristics of quantum hardware, which results in impractical implementations. Additionally, existing algorithms lack scalability for larger graph sizes. To bridge these gaps, we propose a novel compilation framework that partitions the target graph state into subgraphs, compiles them individually, and subsequently combines and schedules the circuits to maximize emitter resource utilization. Furthermore, we incorporate local complementation to transform graph states and minimize entanglement overhead. Evaluation of our framework on various graph types demonstrates significant reductions in CNOT gates and circuit duration, up to 52% and 56%. Moreover, it enhances the suppression of photon loss, achieving improvements of up to \times 1.9.
Author Ren, Xiangyu
Huang, Yuexun
Liang, Zhiding
Barbalace, Antonio
Author_xml – sequence: 1
  givenname: Xiangyu
  surname: Ren
  fullname: Ren, Xiangyu
  email: xiangyu.ren@ed.ac.uk
  organization: University of Edinburgh,Edinburgh,Scotland, UK
– sequence: 2
  givenname: Yuexun
  surname: Huang
  fullname: Huang, Yuexun
  organization: University of Chicago,Chicago,IL,USA
– sequence: 3
  givenname: Zhiding
  surname: Liang
  fullname: Liang, Zhiding
  email: liangz9@rpi.edu
  organization: Rensselaer Polytechnic Institute,Troy,NY,USA
– sequence: 4
  givenname: Antonio
  surname: Barbalace
  fullname: Barbalace, Antonio
  organization: University of Edinburgh,Edinburgh,Scotland, UK
BookMark eNo1j8tKw0AYRkfQhda-gci8QOrcL8sQexECitV1-ZP8oYNJJkxHxLe3oK4-OIvD-W7I5RQnJOSesxXnzD88lpWRTvmVYEKfEZfCK39Blt56JyXXTDLlrkld0n0LAzQDUpg6-hqbz1OmVRznMEAOcaKbBCN-xfRB-5joegw5YypejjHHKbR0m2A-0n2GjLfkqofhhMu_XZD3zfqt2hX18_apKusCuPW5ML0SrZNKeeS9tQigtRad9thbxQGVsY3SXijDOu6Ryebc7wRAZ7iWnZMLcvfrDYh4mFMYIX0f_k_KH5XKSso
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC63849.2025.11132949
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331503048
EndPage 7
ExternalDocumentID 11132949
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a179t-6f42c83449e1f77eaa5552d59ef741ae467b4592460d19e03b11182aad6153d83
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a179t-6f42c83449e1f77eaa5552d59ef741ae467b4592460d19e03b11182aad6153d83
PageCount 7
ParticipantIDs ieee_primary_11132949
PublicationCentury 2000
PublicationDate 2025-June-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2025 62nd ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.302286
Snippet Quantum graph states are critical resources for various quantum algorithms, and also determine essential interconnections in distributed quantum computing....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Hardware
Logic gates
Partitioning algorithms
Probabilistic logic
Quantum algorithm
Radiative recombination
Resource management
Scalability
Schedules
Transforms
Title A Scalable and Robust Compilation Framework for Emitter-Photonic Graph State
URI https://ieeexplore.ieee.org/document/11132949
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctWjEwASKItzywunXsOInHqrQwVFXFQ-pW2fFFdKBBbdrPj89JQQwMbFZkK9L5df_kfneE3KvccGedZHFpHUvS0jEtgDNMnVUolZrcBlB4kk2n-XyuZy2sHlgYAAjBZ9DDZviX76pii5_K-k1Z9ER3SCfL0gbWaqnfmOv-w2DoV1OC-IlQvX3nX2VTwq0xPv7n-05I9MPf0dn3zXJKDmB1RiYD-uINiqgT9fKfPld2u6kpbuhlE9BGx_tIK-pdUTr6WCKqw2bvVY0JcOkjJqemwb2MyNt49Dp8Ym0tBGb8lqlZWiaiwJoYGuIyy8AYpZRwSkPpfQID_ryzifJiKuUu1sCljVE6GOPQo3O5PCfdVbWCC0J5kUiZSi6gVH6Y76kM114IWum1g8guSYSmWHw26S4Weytc_fH8mhyhwTF-Sogb0q3XW7glh8WuXm7Wd2GSvgDWcpKM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAtKEgwAaKINx5Y3Tp-JPFYlZYiQlVBkbpVTuyIDCSoTfn9-JwWxMDAZlm2LJ1fd_Z9dwjdylhTkxpOgjw1RIS5IYpZSiB0ViZlqOPUg8JJNB7Hs5marGF1z8JYa73zme1A0f_lmypbwVNZt0mLLtQ22pFCMNrgWmvuN6Cqe9fru_UkAEBhsrNp_itxir83hgf_HPEQtX8IPDz5vluO0JYtj1HSwy9OpAA7YV0a_Fylq2WNYUsXjUsbHm58rbBTRvHgvQBYh0zeqhpC4OJ7CE-NvYLZRq_DwbQ_IutsCES7TVOTMBcsg6wYygZ5FFmtpZTMSGVzpxVo6068VEhnToXUBMpSngZgPGhtQKczMT9BrbIq7SnCNBOch5wym0vXzbWUmipnCqbcWQ8sOkNtEMX8owl4Md9I4fyP-hu0N5o-JfPkYfx4gfZB-OBNxdglatWLlb1Cu9lnXSwX137CvgCpf5XT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=A+Scalable+and+Robust+Compilation+Framework+for+Emitter-Photonic+Graph+State&rft.au=Ren%2C+Xiangyu&rft.au=Huang%2C+Yuexun&rft.au=Liang%2C+Zhiding&rft.au=Barbalace%2C+Antonio&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11132949&rft.externalDocID=11132949