A Scalable and Robust Compilation Framework for Emitter-Photonic Graph State
Quantum graph states are critical resources for various quantum algorithms, and also determine essential interconnections in distributed quantum computing. There are two schemes for generating graph states - probabilistic scheme and deterministic scheme. While the all-photonic probabilistic scheme h...
Gespeichert in:
| Veröffentlicht in: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
22.06.2025
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Quantum graph states are critical resources for various quantum algorithms, and also determine essential interconnections in distributed quantum computing. There are two schemes for generating graph states - probabilistic scheme and deterministic scheme. While the all-photonic probabilistic scheme has garnered significant attention, the emitter-photonic deterministic scheme has been proved to be more scalable and feasible across several hardware platforms. This paper studies the GraphState-to-Circuit compilation problem in the context of the deterministic scheme. Previous research has primarily focused on optimizing individual circuit parameters, often neglecting the characteristics of quantum hardware, which results in impractical implementations. Additionally, existing algorithms lack scalability for larger graph sizes. To bridge these gaps, we propose a novel compilation framework that partitions the target graph state into subgraphs, compiles them individually, and subsequently combines and schedules the circuits to maximize emitter resource utilization. Furthermore, we incorporate local complementation to transform graph states and minimize entanglement overhead. Evaluation of our framework on various graph types demonstrates significant reductions in CNOT gates and circuit duration, up to 52% and 56%. Moreover, it enhances the suppression of photon loss, achieving improvements of up to \times 1.9. |
|---|---|
| AbstractList | Quantum graph states are critical resources for various quantum algorithms, and also determine essential interconnections in distributed quantum computing. There are two schemes for generating graph states - probabilistic scheme and deterministic scheme. While the all-photonic probabilistic scheme has garnered significant attention, the emitter-photonic deterministic scheme has been proved to be more scalable and feasible across several hardware platforms. This paper studies the GraphState-to-Circuit compilation problem in the context of the deterministic scheme. Previous research has primarily focused on optimizing individual circuit parameters, often neglecting the characteristics of quantum hardware, which results in impractical implementations. Additionally, existing algorithms lack scalability for larger graph sizes. To bridge these gaps, we propose a novel compilation framework that partitions the target graph state into subgraphs, compiles them individually, and subsequently combines and schedules the circuits to maximize emitter resource utilization. Furthermore, we incorporate local complementation to transform graph states and minimize entanglement overhead. Evaluation of our framework on various graph types demonstrates significant reductions in CNOT gates and circuit duration, up to 52% and 56%. Moreover, it enhances the suppression of photon loss, achieving improvements of up to \times 1.9. |
| Author | Ren, Xiangyu Huang, Yuexun Liang, Zhiding Barbalace, Antonio |
| Author_xml | – sequence: 1 givenname: Xiangyu surname: Ren fullname: Ren, Xiangyu email: xiangyu.ren@ed.ac.uk organization: University of Edinburgh,Edinburgh,Scotland, UK – sequence: 2 givenname: Yuexun surname: Huang fullname: Huang, Yuexun organization: University of Chicago,Chicago,IL,USA – sequence: 3 givenname: Zhiding surname: Liang fullname: Liang, Zhiding email: liangz9@rpi.edu organization: Rensselaer Polytechnic Institute,Troy,NY,USA – sequence: 4 givenname: Antonio surname: Barbalace fullname: Barbalace, Antonio organization: University of Edinburgh,Edinburgh,Scotland, UK |
| BookMark | eNo1j8tKw0AYRkfQhda-gci8QOrcL8sQexECitV1-ZP8oYNJJkxHxLe3oK4-OIvD-W7I5RQnJOSesxXnzD88lpWRTvmVYEKfEZfCK39Blt56JyXXTDLlrkld0n0LAzQDUpg6-hqbz1OmVRznMEAOcaKbBCN-xfRB-5joegw5YypejjHHKbR0m2A-0n2GjLfkqofhhMu_XZD3zfqt2hX18_apKusCuPW5ML0SrZNKeeS9tQigtRad9thbxQGVsY3SXijDOu6Ryebc7wRAZ7iWnZMLcvfrDYh4mFMYIX0f_k_KH5XKSso |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC63849.2025.11132949 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331503048 |
| EndPage | 7 |
| ExternalDocumentID | 11132949 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a179t-6f42c83449e1f77eaa5552d59ef741ae467b4592460d19e03b11182aad6153d83 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a179t-6f42c83449e1f77eaa5552d59ef741ae467b4592460d19e03b11182aad6153d83 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_11132949 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-22 |
| PublicationDateYYYYMMDD | 2025-06-22 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 62nd ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.302397 |
| Snippet | Quantum graph states are critical resources for various quantum algorithms, and also determine essential interconnections in distributed quantum computing.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Hardware Logic gates Partitioning algorithms Probabilistic logic Quantum algorithm Radiative recombination Resource management Scalability Schedules Transforms |
| Title | A Scalable and Robust Compilation Framework for Emitter-Photonic Graph State |
| URI | https://ieeexplore.ieee.org/document/11132949 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECW28eBJjTV-h4NXWpbCAsemtnowTeNH0lvDwmzswa5pt_5-GbbVePDgjRASkoGBNzBvHiG3JQjnNYapQXkm88CZNd4yI33p40mpjSqS2ISeTMxsZqdbsnriwgBASj6DLjbTX36o_AafynqNLLq0LdLSWjdkrS3rN-O2dzcYxt0kkX4iVHc3-JdsSro1xof_nO-IdH74d3T6fbMckz1YnpDHAX2OBkWqE43hP32qis26pujQiyahjY53mVY0QlE6el8gVYdN36oaC-DSeyxOTRO87JDX8ehl-MC2WgjMRZepWV5K4VETw0JWag3OKaVEUBbKiAkcxPOukCoGUzkPmQXeLzIMHZwLiOiC6Z-S9rJawhmhrvRc2ELqiBSkLbjjfekgAjtjwRuTn5MOmmL-0ZS7mO-scPFH_yU5QINj_pQQV6RdrzZwTfb9Z71Yr27SIn0BdkCTBw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwMhECVaTfSkxhq_5eB1W5bCLhyb2lpjbRqtSW8NC7NxD-6aduvvl9ltNR48eCOEhGRg4A3Mm0fIbQrc2BjDVCdtICLHAq2sDpSwqfUnZaxkUolNxOOxms30ZE1Wr7gwAFAln0ELm9VfvivsCp_K2rUsutDbZEcKwcOarrXm_YZMt--6Pb-fBBJQuGxthv8STqnujcHBP2c8JM0fBh6dfN8tR2QL8mMy6tIXb1IkO1GTO_pcJKtlSdGlszqljQ42uVbUg1Haf8-QrBNM3ooSS-DSeyxPTSuA2SSvg_60NwzWagiB8U5TBlEquEVVDA1hGsdgjJSSO6kh9ajAgD_xEiF9OBUxF2pgnSTE4MEYh5jOqc4JaeRFDqeEmtQyrhMRe6wgdMIM6wgDHtopDVap6Iw00RTzj7rgxXxjhfM_-m_I3nD6NJqPHsaPF2QfjY_ZVJxfkka5WMEV2bWfZbZcXFcL9gVOWZZO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=A+Scalable+and+Robust+Compilation+Framework+for+Emitter-Photonic+Graph+State&rft.au=Ren%2C+Xiangyu&rft.au=Huang%2C+Yuexun&rft.au=Liang%2C+Zhiding&rft.au=Barbalace%2C+Antonio&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11132949&rft.externalDocID=11132949 |