Late Breaking Results: Hybrid Logic Optimization with Predictive Self-Supervision
Hybrid optimization is an emerging approach in logic synthesis, focusing on applying diverse optimization methods to different parts of a logic circuit. This paper analyzes the relationship between each vertex and its corresponding optimization method. We extract a subgraph centered on each vertex a...
Uloženo v:
| Vydáno v: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 2 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.06.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hybrid optimization is an emerging approach in logic synthesis, focusing on applying diverse optimization methods to different parts of a logic circuit. This paper analyzes the relationship between each vertex and its corresponding optimization method. We extract a subgraph centered on each vertex and quantify the logic optimization results of these subgraphs as vertex features. Based on these features, we propose a circuit partitioning method to cluster the logic circuit, enabling the final optimized circuit to be constructed by merging clusters optimized with their respective methods. Additionally, we introduce a self-supervised prediction model to efficiently obtain vertex features. The experimental results targeting LUT mapping demonstrate that our method achieves improvements of 8.48 \% in area and 9.81% in delay compared to the state-of-the-art. |
|---|---|
| AbstractList | Hybrid optimization is an emerging approach in logic synthesis, focusing on applying diverse optimization methods to different parts of a logic circuit. This paper analyzes the relationship between each vertex and its corresponding optimization method. We extract a subgraph centered on each vertex and quantify the logic optimization results of these subgraphs as vertex features. Based on these features, we propose a circuit partitioning method to cluster the logic circuit, enabling the final optimized circuit to be constructed by merging clusters optimized with their respective methods. Additionally, we introduce a self-supervised prediction model to efficiently obtain vertex features. The experimental results targeting LUT mapping demonstrate that our method achieves improvements of 8.48 \% in area and 9.81% in delay compared to the state-of-the-art. |
| Author | Zhang, Ran Xu, Qiang Shi, Zhengyuan Fu, Rongliang Zheng, Ziyang Ho, Tsung-Yi Pu, Yuan Huang, Junying |
| Author_xml | – sequence: 1 givenname: Rongliang surname: Fu fullname: Fu, Rongliang organization: The Chinese University of Hong Kong,Department of Computer Science and Engineering,Hong Kong,China – sequence: 2 givenname: Ran surname: Zhang fullname: Zhang, Ran organization: Institute of Computing Technology, CAS,State Key Lab of Processors,Beijing,China – sequence: 3 givenname: Ziyang surname: Zheng fullname: Zheng, Ziyang organization: The Chinese University of Hong Kong,Department of Computer Science and Engineering,Hong Kong,China – sequence: 4 givenname: Zhengyuan surname: Shi fullname: Shi, Zhengyuan organization: The Chinese University of Hong Kong,Department of Computer Science and Engineering,Hong Kong,China – sequence: 5 givenname: Yuan surname: Pu fullname: Pu, Yuan organization: The Chinese University of Hong Kong,Department of Computer Science and Engineering,Hong Kong,China – sequence: 6 givenname: Junying surname: Huang fullname: Huang, Junying email: huangjunying@ict.ac.cn organization: Institute of Computing Technology, CAS,State Key Lab of Processors,Beijing,China – sequence: 7 givenname: Qiang surname: Xu fullname: Xu, Qiang organization: The Chinese University of Hong Kong,Department of Computer Science and Engineering,Hong Kong,China – sequence: 8 givenname: Tsung-Yi surname: Ho fullname: Ho, Tsung-Yi organization: The Chinese University of Hong Kong,Department of Computer Science and Engineering,Hong Kong,China |
| BookMark | eNo1j9tKw0AURUfQB639A5H5gdS55XJ8q_FSIVC1-lxOMid1ME3CZFqpX29EfdrsxWLDPmPHbdcSY5dSzKQUcHU7zxOdGZgpoeIRSa00wBGbQgqZ1jIWWpjslD0XGIjfeMIP1274Cw27JgzXfHEovbO86Dau4ss-uK37wuC6ln-68M6fPFlXBbcnvqKmjla7nvzeDaNwzk5qbAaa_uWEvd3fveaLqFg-PObzIkKZQoiS2MaASmAMiUWhyNoSsC7rn261kBZsZQzVgACJ0iYTBhObGhODFiOYsIvfXUdE6967LfrD-v-p_gb5QE3h |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC63849.2025.11132399 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331503048 |
| EndPage | 2 |
| ExternalDocumentID | 11132399 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a179t-65d59a20a596da02eddb9afbf596dd301d9dc44ef9a996234804a6d7445930623 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a179t-65d59a20a596da02eddb9afbf596dd301d9dc44ef9a996234804a6d7445930623 |
| PageCount | 2 |
| ParticipantIDs | ieee_primary_11132399 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-22 |
| PublicationDateYYYYMMDD | 2025-06-22 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 62nd ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.302431 |
| Snippet | Hybrid optimization is an emerging approach in logic synthesis, focusing on applying diverse optimization methods to different parts of a logic circuit. This... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Design automation Feature extraction Focusing Integrated circuit modeling Logic Logic circuits Merging Optimization methods Predictive models Table lookup |
| Title | Late Breaking Results: Hybrid Logic Optimization with Predictive Self-Supervision |
| URI | https://ieeexplore.ieee.org/document/11132399 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCZu8eBJjTPq1HDwykYplOJNp8sOZk6nyW4LhdfEZG7L1pr438vrOo0HD14aWghNHvB-wcdHyFUWg4hyqZhIXQhQopwzq13MbBwBaMddqK3IJvRwmE4mZlSD1SssDABUh8-gg8VqL98vXImpsm5Fix4saoM0tE42YK0a9Rtx07276YXZJBF-IlRn2_gXbUplNfr7__zfAWn94O_o6NuyHJIdmB-Rp4fgFtLb4ORhdps-w7qcFetrOvhE0BVF0mRHH4MGeK-hlRRzrKEf3IpBpUbHMMvZuFyiesAkWYu89u9fegNWEyIwG9ZNwRLllbGCW2USb7kA7zNj8yzHdx-WqjfeSQm5sSGMEbFMubSJ11IqE0IDER-T5nwxhxNCvfYYSkTKBZ8kM9IqEOGh8Eom7lJ7Slooj-lyc-fFdCuKsz--t8keSh0PUQlxTprFqoQLsus-irf16rIaqS_cSZXq |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4UTfSkRozf9uB10HUtW70pSjAiomDCjXTtu4QEgcBm4r-3bx0aDx68LF3btEk_3q_26UPIZRoBDzMhA54Y56CEGQt0bKJARyFAbJhxpZ5sIu52k-FQ9UqwusfCAIC_fAY1TPqzfDszBYbK6p4W3WnUdbKB1FklXKvE_YZM1W-vm249CQSgcFlbVf9FnOL1Rmvnnz3ukuoPAo_2vnXLHlmD6T557jjDkN44Mw_j2_QFlsUkX17R9gfCrijSJhv65GTAWwmupBhlde3gYQyKNdqHSRb0izkKCAyTVclr627QbAclJUKg3c7Jg4a0UmnOtFQNqxkHa1OlszTDf-s2q1XWCAGZ0s6R4ZFImNANGwshlXMOeHRAKtPZFA4JtbFFZyKUxlklqRJaAncfiY8yMZPoI1LF8RjNv169GK2G4viP_Auy1R48dkad--7DCdnGGcArVZyfkkq-KOCMbJr3fLxcnPtZ-wTcdpkz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Late+Breaking+Results%3A+Hybrid+Logic+Optimization+with+Predictive+Self-Supervision&rft.au=Fu%2C+Rongliang&rft.au=Zhang%2C+Ran&rft.au=Zheng%2C+Ziyang&rft.au=Shi%2C+Zhengyuan&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FDAC63849.2025.11132399&rft.externalDocID=11132399 |