DyREM: Dynamically Mitigating Quantum Readout Error with Embedded Accelerator

Quantum readout error is the most significant source of error, substantially reducing the measurement fidelity. Tensor-product-based readout error mitigation has been proposed to address this issue by approximating the mitigation matrix. However, this method inevitably encounters the dynamic generat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autori: Zhou, Kaiwen, Lu, Liqiang, Zhang, Hanyu, Xiang, Debin, Tao, Chenning, Zhao, Xinkui, Zheng, Size, Yin, Jianwei
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 22.06.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Quantum readout error is the most significant source of error, substantially reducing the measurement fidelity. Tensor-product-based readout error mitigation has been proposed to address this issue by approximating the mitigation matrix. However, this method inevitably encounters the dynamic generation of the mitigation matrix, leading to long latency. In this paper, we propose DyREM, a software-hardware codesign approach that mitigates readout errors with an embedded accelerator. The main innovation lies in leveraging the inherent sparsity in the nonzero probability distribution of quantum states and calculating the tensor product on an embedded accelerator. Specifically, using the output sparsity, our dataflow dynamically downsamples the original mitigation matrix, which dramatically reduces the memory requirement. Then, we design DyREM architecture that can flexibly gate the redundant computation of nonzero quantum states. Experiments demonstrate that DyREM achieves an average speedup of 9.6 \times \sim 2000 \times and fidelity improvements of 1.03 \times \sim 1.15 \times compared to state-of-the-art readout error mitigation methods.
DOI:10.1109/DAC63849.2025.11132635