Enabling On-Tiny-Device Model Personalization via Gradient Condensing and Alternant Partial Update
On-device training enables the model to adapt to user-specific data by fine-tuning a pre-trained model locally. As embedded devices become ubiquitous, on-device training is increasingly essential since users can benefit from the personalized model without transmitting data and model parameters to th...
Saved in:
| Published in: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) pp. 1 - 7 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
22.06.2025
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!