SAPO: Improving the Scalability and Accuracy of Quantum Linear Solver for Portfolio Optimization

Portfolio optimization is one of the most important financial problem, suffering from huge computational pressure due to arithmetic complexity. Quantum computing offers polynomial or even exponential speedup that turns out to be a promising approach. However, existing quantum methods is fundamentall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7
Hauptverfasser: Zhu, Tianze, Lu, Liqiang, Chen, Jiajun, Chen, Yuhang, Chen, Hengrui, Xi, Meng, Zhang, Jinshan, Sun, Xiaoming, Yin, Jianwei
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 22.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Portfolio optimization is one of the most important financial problem, suffering from huge computational pressure due to arithmetic complexity. Quantum computing offers polynomial or even exponential speedup that turns out to be a promising approach. However, existing quantum methods is fundamentally limited by either poor scalability or insufficient accuracy. In this paper, we propose SAPO, which formally articulates the quantum circuit that seamlessly integrates financial theory and historical data characteristics with quantum algebra. The circuit design is extended from the HHL algorithm incorporating mean-variance theory, which promotes scalability by equivalent transformation. Then, we present a min-max eigenvalue model that leverages historical financial information to refine parameter settings with high accuracy. Experiments conducted on market data demonstrate that SAPO can effectively reduce the complexity by \mathbf{3 6. 9 4 \%} compared to basic HHL [1], [2] and improve the accuracy by 1.46 \times compared to hybrid HHL [3].
AbstractList Portfolio optimization is one of the most important financial problem, suffering from huge computational pressure due to arithmetic complexity. Quantum computing offers polynomial or even exponential speedup that turns out to be a promising approach. However, existing quantum methods is fundamentally limited by either poor scalability or insufficient accuracy. In this paper, we propose SAPO, which formally articulates the quantum circuit that seamlessly integrates financial theory and historical data characteristics with quantum algebra. The circuit design is extended from the HHL algorithm incorporating mean-variance theory, which promotes scalability by equivalent transformation. Then, we present a min-max eigenvalue model that leverages historical financial information to refine parameter settings with high accuracy. Experiments conducted on market data demonstrate that SAPO can effectively reduce the complexity by \mathbf{3 6. 9 4 \%} compared to basic HHL [1], [2] and improve the accuracy by 1.46 \times compared to hybrid HHL [3].
Author Zhu, Tianze
Chen, Yuhang
Xi, Meng
Lu, Liqiang
Yin, Jianwei
Zhang, Jinshan
Chen, Jiajun
Sun, Xiaoming
Chen, Hengrui
Author_xml – sequence: 1
  givenname: Tianze
  surname: Zhu
  fullname: Zhu, Tianze
  email: tianzezhu@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 2
  givenname: Liqiang
  surname: Lu
  fullname: Lu, Liqiang
  email: liqianglu@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 3
  givenname: Jiajun
  surname: Chen
  fullname: Chen, Jiajun
  email: cuiox@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 4
  givenname: Yuhang
  surname: Chen
  fullname: Chen, Yuhang
  email: chenyuhang@pku.edu.cn
  organization: Peking University,Beijing,China
– sequence: 5
  givenname: Hengrui
  surname: Chen
  fullname: Chen, Hengrui
  email: hengruichen@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 6
  givenname: Meng
  surname: Xi
  fullname: Xi, Meng
  email: ximeng@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 7
  givenname: Jinshan
  surname: Zhang
  fullname: Zhang, Jinshan
  email: zhangjinshan@zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
– sequence: 8
  givenname: Xiaoming
  surname: Sun
  fullname: Sun, Xiaoming
  email: sunxiaoming@ict.ac.cn
  organization: Chinese Academy of Sciences,Beijing,China
– sequence: 9
  givenname: Jianwei
  surname: Yin
  fullname: Yin, Jianwei
  email: zjuyjw@cs.zju.edu.cn
  organization: Zhejiang University,Hangzhou,China
BookMark eNo1j8FKxDAYhCPoQdd9A5G8QNckf5Mm3krVdaHQlep5TdtUA21SYnahPr0F9TTzzeGDuULnzjuD0C0lG0qJunvICwEyVRtGGF8mCkCBnKG1ypRcOidAUnmJ3ut8X93j3TgFf7LuA8dPg-tWD7qxg40z1q7Dedseg25n7Hv8ctQuHkdcWmd0wLUfTibg3ge89yH2frAeV1O0o_3W0Xp3jS56PXyZ9V-u0NvT42vxnJTVdlfkZaJppmICjEjOe2i0ZACZ4A3tGkWlFi2DNk0XElQRJSj0SjbEGMXTrBEs7QRXxMAK3fx6rTHmMAU76jAf_o_DD6bUUdw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC63849.2025.11133130
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331503048
EndPage 7
ExternalDocumentID 11133130
Genre orig-research
GrantInformation_xml – fundername: Research and Development
  funderid: 10.13039/100006190
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a179t-320855f3ba8233765b1db918a6c23c441db61909613f98b0ee9547b624d6590e3
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a179t-320855f3ba8233765b1db918a6c23c441db61909613f98b0ee9547b624d6590e3
PageCount 7
ParticipantIDs ieee_primary_11133130
PublicationCentury 2000
PublicationDate 2025-June-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2025 62nd ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.295152
Snippet Portfolio optimization is one of the most important financial problem, suffering from huge computational pressure due to arithmetic complexity. Quantum...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Complexity theory
Eigenvalues and eigenfunctions
Optimization
Polynomials
Portfolios
Quantum circuit
Quantum mechanics
Scalability
Transforms
Title SAPO: Improving the Scalability and Accuracy of Quantum Linear Solver for Portfolio Optimization
URI https://ieeexplore.ieee.org/document/11133130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3c_C67W4em8RbqRZPbaUKvdVNNoGC3ZXaFfrvnWzXigcP3kIIBGYyk5nJfPkIuVWGZlTFPvJe6YgLayIlOOY8qfUUA3oruK_JJuRopGYzPWnA6jUWxjlXN5-5bhjWb_l5aatQKusFWnSGTrdFWlKmW7BWg_pNYt277w_wNPEAP6Gi-734F21KfWsMD_-53xHp_ODvYLK7WY7JnitOyOu0Pxnfwa4KABi6wRRFvP1pewNZkUPf2mqV2Q2UHp4qlFq1BEw38TjDtAxN0IBBKoT2UV--LUoYo8dYNlDMDnkZPjwPHqOGHyHK0IzWEQv8msIzkynK0FEIk-RGJypLLWUW45zcYHoUOF2Y18rEzmnBpUkpz1OhY8dOSbsoC3dGQDjMO4QWaPGSe8kVSzJPpfQ588wl6px0gnjm79svMObfkrn4Y_6SHAQlhJ4qSq9Ie72q3DXZt5_rxcfqplbcFwq9mW0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl633c1jN_FWqqVibSut0FvdZBMo2F1Zu0L_vZPttuLBg7cQAoGZzGRmMl8-hG6FIjERvvWsFdJjXCtPcAY5T6gtgYBec2ZLsomo3xeTiRxWYPUSC2OMKZvPTMMNy7f8JNOFK5U1HS06Bae7jXY4Y8RfwbUq3G_gy-Z9qw3niTkACuGN9fJfxCnlvdE5-OeOh6j-g8DDw83dcoS2THqM3kat4eAOb-oAGII3PAIhr_7aXuI4TXBL6yKP9RJnFr8UILdijiHhhAONR5lrg8YQpmLXQGqz91mGB-Az5hUYs45eOw_jdterGBK8GAxp4VHHsMktVbEgFFwFV0GiZCDiUBOqIdJJFCRIjtWFWimUb4zkLFIhYUnIpW_oCaqlWWpOEeYGMg8uOdh8xGzEBA1iS6LIJtRSE4gzVHfimX6sPsGYriVz_sf8Ddrrjp97095j_-kC7TuFuA4rQi5RbZEX5grt6q_F7DO_LpX4DTZonLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=SAPO%3A+Improving+the+Scalability+and+Accuracy+of+Quantum+Linear+Solver+for+Portfolio+Optimization&rft.au=Zhu%2C+Tianze&rft.au=Lu%2C+Liqiang&rft.au=Chen%2C+Jiajun&rft.au=Chen%2C+Yuhang&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11133130&rft.externalDocID=11133130