Delving into Topology Representation for Layout Pattern: A Novel Contrastive Learning Framework for Hotspot Detection

Recently, machine learning-based techniques have been applied for layout hotspot detection. However, existing methods encounter challenges in capturing the decision boundary across the entire dataset and ignore the geometric properties and topology of the polygons. In this paper, we introduce CLI-HD...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autori: Chen, Silin, Di, Kangjian, Wang, Guohao, Zhao, Wenzheng, Du, Li, Zou, Ningmu
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 22.06.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recently, machine learning-based techniques have been applied for layout hotspot detection. However, existing methods encounter challenges in capturing the decision boundary across the entire dataset and ignore the geometric properties and topology of the polygons. In this paper, we introduce CLI-HD, a novel contrastive learning framework on layout sequences and images for hotspot detection. Our framework improves the ability to distinguish between hotspots and non-hotspots by similarity computations instead of a single decision boundary. To effectively incorporate geometric information into the model training process, we propose Layout2Seq, which encodes polygon shapes as vectors within sequences that are subsequently fed into the CLIHD. Furthermore, to better represent topology information, we develop an absolute position embedding, replacing the standard position encoders used in Transformer architectures. Extensive evaluations on various benchmarks demonstrate that CLI-HD outperforms current state-of-the-art methods, with an accuracy improvement ranging from 0.82 \% to 4.77 \% and a reduction in false alarm rates by \mathbf{4. 9 \%} to \mathbf{2 3. 1 8 \%}.
AbstractList Recently, machine learning-based techniques have been applied for layout hotspot detection. However, existing methods encounter challenges in capturing the decision boundary across the entire dataset and ignore the geometric properties and topology of the polygons. In this paper, we introduce CLI-HD, a novel contrastive learning framework on layout sequences and images for hotspot detection. Our framework improves the ability to distinguish between hotspots and non-hotspots by similarity computations instead of a single decision boundary. To effectively incorporate geometric information into the model training process, we propose Layout2Seq, which encodes polygon shapes as vectors within sequences that are subsequently fed into the CLIHD. Furthermore, to better represent topology information, we develop an absolute position embedding, replacing the standard position encoders used in Transformer architectures. Extensive evaluations on various benchmarks demonstrate that CLI-HD outperforms current state-of-the-art methods, with an accuracy improvement ranging from 0.82 \% to 4.77 \% and a reduction in false alarm rates by \mathbf{4. 9 \%} to \mathbf{2 3. 1 8 \%}.
Author Zhao, Wenzheng
Wang, Guohao
Chen, Silin
Du, Li
Di, Kangjian
Zou, Ningmu
Author_xml – sequence: 1
  givenname: Silin
  surname: Chen
  fullname: Chen, Silin
  organization: Nanjing University,School of Integrated Circuits,Suzhou,China
– sequence: 2
  givenname: Kangjian
  surname: Di
  fullname: Di, Kangjian
  organization: Nanjing University,School of Integrated Circuits,Suzhou,China
– sequence: 3
  givenname: Guohao
  surname: Wang
  fullname: Wang, Guohao
  organization: ZetaTech Co.,Ltd
– sequence: 4
  givenname: Wenzheng
  surname: Zhao
  fullname: Zhao, Wenzheng
  organization: ZetaTech Co.,Ltd
– sequence: 5
  givenname: Li
  surname: Du
  fullname: Du, Li
  organization: Nanjing University,School of Electronic Science and Engineering,Nanjing,China
– sequence: 6
  givenname: Ningmu
  surname: Zou
  fullname: Zou, Ningmu
  organization: Nanjing University,School of Integrated Circuits,Suzhou,China
BookMark eNo10F9LwzAUBfAI-qBz30AkX6AzyW3axLfROScUFZnP47a9HcUuKWk22bfX-efpwIHzezhX7Nx5R4zdSjGTUti7xbzIwKR2poTS35UEACPO2NTm1gBILUCk5pLtF9QfOrflnYuer_3ge7898jcaAo3kIsbOO976wEs8-n3krxgjBXfP5_zZH6jnhXcx4Bi7A_GSMLiTtgy4o08fPn6mKx_HwUe-oEj1CbxmFy32I03_csLelw_rYpWUL49PxbxMUOY2JoqyRutKQwOZRNJo8zo1oFDnOgVSVatlreo208ZapLbJZd6QMMpaURljYMJuft2OiDZD6HYYjpv_N-AL_utbWA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC63849.2025.11133380
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library (LUT)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331503048
EndPage 6
ExternalDocumentID 11133380
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a179t-2e6d55b53d361ae5a97c4832a57543e2bf51c2cf65899aefd717de082990b8883
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a179t-2e6d55b53d361ae5a97c4832a57543e2bf51c2cf65899aefd717de082990b8883
PageCount 6
ParticipantIDs ieee_primary_11133380
PublicationCentury 2000
PublicationDate 2025-June-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2025 62nd ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2951756
Snippet Recently, machine learning-based techniques have been applied for layout hotspot detection. However, existing methods encounter challenges in capturing the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Contrastive learning
Distance measurement
Layout
Shape
Topology
Training
Transformers
Vectors
Title Delving into Topology Representation for Layout Pattern: A Novel Contrastive Learning Framework for Hotspot Detection
URI https://ieeexplore.ieee.org/document/11133380
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawMhEJU29NBTW5rSbzz0usmuH3HtLSRdcgghlLTkFlx3tgSCWxI3kH9fNZuWHnroTUQR1NF5-t4MQk-CpiktEx0xDWnEEgdQpCYQCa046VGtSfgueB-LySSdz-W0EasHLQwABPIZdHwx_OUXla79U1nXp0V3kMoh9GMhxF6s1ah-k1h2h_2B203My08I7xwa_0qbEm6N7Oyf452j9o_-Dk-_b5YLdATmEtVDWHn0j5fGVni2T26ww6-BytooiAx2Pigeq11VWzwNoTPNM-7jSbWFFfaRqNZq4w843MRV_cDZgZ0Vuo4q63CuxUOwgaNl2ugte5kNRlGTNCFSzrZsRKBXcJ5zWtBeooArKTRzZqucX8YokLzkiSa6dJ6HlArKwuG5ArzCVsa5g8P0CrVMZeAaYZZ6iihLtKSayVLmVDtnIC64VHEpSH6D2n7OFp_7uBiLw3Td_lF_h079yniiFSH3qGXXNTygE721y836MazmF63-o6c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBT2pOPG3OXjt1ubH2ngbm2NiLUOm7DbS9FUGox1bOth_b5J1igcP3kJICCR5yfuS73sPoYeQRhHNA-UxBZHHAgNQhCLghUpy0qFKEfdd8BGHSRJNJmJUi9WdFgYAHPkMWrbo_vKzUlX2qaxt06IbSGUQ-j5njARbuVat-w180e53e2Y_MStAIby1a_4rcYq7NwbH_xzxBDV_FHh49H23nKI9KM5Q1Ye5xf94VugSj7fpDTb4zZFZaw1RgY0XimO5KSuNRy54ZvGIuzgp1zDHNhbVUq7sEYfryKqfeLDjZ7muw1IbpKtxH7RjaRVN9D54GveGXp02wZPGurRHoJNxnnKa0U4ggUsRKmYMVxrPjFEgac4DRVRufA8hJOSZQXQZWI2t8FMDiOk5ahRlARcIs8iSRFmgBFVM5CKlyrgDfsaF9POQpJeoaedsuthGxpjupuvqj_p7dDgcv8bT-Dl5uUZHdpUs7YqQG9TQywpu0YFa69lqeedW9gtbu6bu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Delving+into+Topology+Representation+for+Layout+Pattern%3A+A+Novel+Contrastive+Learning+Framework+for+Hotspot+Detection&rft.au=Chen%2C+Silin&rft.au=Di%2C+Kangjian&rft.au=Wang%2C+Guohao&rft.au=Zhao%2C+Wenzheng&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC63849.2025.11133380&rft.externalDocID=11133380