LearnGraph: A Learning-Based Architecture for Dynamic Graph Processing
Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and index management. While learned indexes improve data structure access, they struggle with interconnected graph data. We present LearnGraph, a nov...
Gespeichert in:
| Veröffentlicht in: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
22.06.2025
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and index management. While learned indexes improve data structure access, they struggle with interconnected graph data. We present LearnGraph, a novel architecture with an adaptive tree-based memory manager that dynamically optimizes for graph topology and access patterns. Our design integrates two key components: a hierarchical learned index optimized for graph topology to predict vertex and edge locations, and an adaptive tree structure that automatically reorganizes memory regions based on access patterns. Evaluation results demonstrate that LearnGraph outperforms state-of-theart dynamic graph systems, achieving 3.4 \times higher throughput on average and reducing processing time by 1.7 \times to 11 \times across standard graph workloads. |
|---|---|
| AbstractList | Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and index management. While learned indexes improve data structure access, they struggle with interconnected graph data. We present LearnGraph, a novel architecture with an adaptive tree-based memory manager that dynamically optimizes for graph topology and access patterns. Our design integrates two key components: a hierarchical learned index optimized for graph topology to predict vertex and edge locations, and an adaptive tree structure that automatically reorganizes memory regions based on access patterns. Evaluation results demonstrate that LearnGraph outperforms state-of-theart dynamic graph systems, achieving 3.4 \times higher throughput on average and reducing processing time by 1.7 \times to 11 \times across standard graph workloads. |
| Author | Jiang, Hong Lu, Tiancheng Wu, Yijian Zhou, Ziyu Zhang, Lingling |
| Author_xml | – sequence: 1 givenname: Lingling surname: Zhang fullname: Zhang, Lingling email: 7089@cnu.edu.cn organization: Capital Normal University – sequence: 2 givenname: Yijian surname: Wu fullname: Wu, Yijian organization: Capital Normal University – sequence: 3 givenname: Hong surname: Jiang fullname: Jiang, Hong organization: University of Texas at Arlington – sequence: 4 givenname: Ziyu surname: Zhou fullname: Zhou, Ziyu organization: Capital Normal University – sequence: 5 givenname: Tiancheng surname: Lu fullname: Lu, Tiancheng organization: Capital Normal University |
| BookMark | eNo1T0FOwzAQNBIcoPQHCPkDKV47trPcQkoLUqT20Htlx2saiSaVEw79PVEpcxnNaHY188Buu74jxp5BLAAEvizLyqgix4UUUk8WqAl4w-ZosVAKtFAiL-7ZqiaXunVyp8MrL_lFtd1X9uYGCrxMzaEdqRl_EvHYJ748d-7YNvxywLepb2gYpvwju4vue6D5lWdst3rfVR9ZvVl_VmWdObA4ZuCDiiClydGbxgGgk95boaKJOZqgycfo7dTbAlGQGqzxoB0ajMEYNWNPf29bItqfUnt06bz_X6d-AUY5SOw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC63849.2025.11133339 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331503048 |
| EndPage | 7 |
| ExternalDocumentID | 11133339 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a179t-1bd3f122649b6ca119a2bb703f6f496d5ebffb784971eed25176b15a969fd663 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a179t-1bd3f122649b6ca119a2bb703f6f496d5ebffb784971eed25176b15a969fd663 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_11133339 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-22 |
| PublicationDateYYYYMMDD | 2025-06-22 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 62nd ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.295249 |
| Snippet | Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptation models Data models Indexes Organizations Performance gain Predictive models Standards organizations Systems architecture Throughput Topology |
| Title | LearnGraph: A Learning-Based Architecture for Dynamic Graph Processing |
| URI | https://ieeexplore.ieee.org/document/11133339 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4I8eBJjRjf6cFrgXZ3W-oNRfRgCAdiuJGd7dR4AYPg73daFh8HD_bUNNP0OZnp4_sG4FrzqSKzVMjMVT2ZV6hYpYyTvksUrHFIib74-cmORr3p1I1rsHrCwhBR-nxG7ZhNb_l-Ua3jVVknhkXn5BrQsNZuwFo16ld1XWfQv-PdlEf4iS7aW-FfYVOS1Rju_7O9A2h94-_E-MuyHMIOzY9gmKhQHyLB9I3oi5oY9UXesh3yov_jQUCwIyoGm1DzIlUQNR6A5VswGd5P7h5lHQVBlqwsK6nQZ0FFvKtDU5VKuVIjsqIGE3JnfEEYAloet1XcrUhBZlAVpTMuePYnjqE5X8zpBARiZqrIv4VlnhPmpfWhcJrYAyIdutkptOIczN42PBez7fDP_ig_h7040_HjlNYX0Fwt13QJu9XH6vV9eZVW5xOa0JFH |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omuhJjRjf9uC1QLvdLvWGIGJEwoEYbmS7nRovYBD8_U7L4uPgwZ6aZpo-JzN9fN8AXEs6VSQZpjwxRZOrwgpSKW24ayD6TBuLkb74uZ8NBs3x2AxLsHrEwiBi_HyGtZCNb_luVizDVVk9hEWnZDZhK1VKihVcq8T9ioapd1pt2k8qAFBkWluL_wqcEu1Gd--fLe5D9RuBx4ZftuUANnB6CN1IhnofKKZvWIuV1Kgv_JYskWOtH08CjFxR1lkFm2exAisRASRfhVH3btTu8TIOAs9JXRZcWJd4ERCvxuoiF8Lk0lpSVa-9MtqlaL23GY07E9StQEKmrUhzo4135FEcQWU6m-IxMGsTXQQGLpsrhVblmfOpkUg-EErfSE6gGuZg8rZiupish3_6R_kV7PRGT_1J_2HweAa7YdbDNyopz6GymC_xAraLj8Xr-_wyrtQnWqaUjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=LearnGraph%3A+A+Learning-Based+Architecture+for+Dynamic+Graph+Processing&rft.au=Zhang%2C+Lingling&rft.au=Wu%2C+Yijian&rft.au=Jiang%2C+Hong&rft.au=Zhou%2C+Ziyu&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11133339&rft.externalDocID=11133339 |