LearnGraph: A Learning-Based Architecture for Dynamic Graph Processing

Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and index management. While learned indexes improve data structure access, they struggle with interconnected graph data. We present LearnGraph, a nov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7
Hauptverfasser: Zhang, Lingling, Wu, Yijian, Jiang, Hong, Zhou, Ziyu, Lu, Tiancheng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 22.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and index management. While learned indexes improve data structure access, they struggle with interconnected graph data. We present LearnGraph, a novel architecture with an adaptive tree-based memory manager that dynamically optimizes for graph topology and access patterns. Our design integrates two key components: a hierarchical learned index optimized for graph topology to predict vertex and edge locations, and an adaptive tree structure that automatically reorganizes memory regions based on access patterns. Evaluation results demonstrate that LearnGraph outperforms state-of-theart dynamic graph systems, achieving 3.4 \times higher throughput on average and reducing processing time by 1.7 \times to 11 \times across standard graph workloads.
AbstractList Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and index management. While learned indexes improve data structure access, they struggle with interconnected graph data. We present LearnGraph, a novel architecture with an adaptive tree-based memory manager that dynamically optimizes for graph topology and access patterns. Our design integrates two key components: a hierarchical learned index optimized for graph topology to predict vertex and edge locations, and an adaptive tree structure that automatically reorganizes memory regions based on access patterns. Evaluation results demonstrate that LearnGraph outperforms state-of-theart dynamic graph systems, achieving 3.4 \times higher throughput on average and reducing processing time by 1.7 \times to 11 \times across standard graph workloads.
Author Jiang, Hong
Lu, Tiancheng
Wu, Yijian
Zhou, Ziyu
Zhang, Lingling
Author_xml – sequence: 1
  givenname: Lingling
  surname: Zhang
  fullname: Zhang, Lingling
  email: 7089@cnu.edu.cn
  organization: Capital Normal University
– sequence: 2
  givenname: Yijian
  surname: Wu
  fullname: Wu, Yijian
  organization: Capital Normal University
– sequence: 3
  givenname: Hong
  surname: Jiang
  fullname: Jiang, Hong
  organization: University of Texas at Arlington
– sequence: 4
  givenname: Ziyu
  surname: Zhou
  fullname: Zhou, Ziyu
  organization: Capital Normal University
– sequence: 5
  givenname: Tiancheng
  surname: Lu
  fullname: Lu, Tiancheng
  organization: Capital Normal University
BookMark eNo1T0FOwzAQNBIcoPQHCPkDKV47trPcQkoLUqT20Htlx2saiSaVEw79PVEpcxnNaHY188Buu74jxp5BLAAEvizLyqgix4UUUk8WqAl4w-ZosVAKtFAiL-7ZqiaXunVyp8MrL_lFtd1X9uYGCrxMzaEdqRl_EvHYJ748d-7YNvxywLepb2gYpvwju4vue6D5lWdst3rfVR9ZvVl_VmWdObA4ZuCDiiClydGbxgGgk95boaKJOZqgycfo7dTbAlGQGqzxoB0ajMEYNWNPf29bItqfUnt06bz_X6d-AUY5SOw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC63849.2025.11133339
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331503048
EndPage 7
ExternalDocumentID 11133339
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a179t-1bd3f122649b6ca119a2bb703f6f496d5ebffb784971eed25176b15a969fd663
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a179t-1bd3f122649b6ca119a2bb703f6f496d5ebffb784971eed25176b15a969fd663
PageCount 7
ParticipantIDs ieee_primary_11133339
PublicationCentury 2000
PublicationDate 2025-June-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2025 62nd ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.295249
Snippet Dynamic graph processing systems using conventional array-based architectures face significant throughput limitations due to inefficient memory access and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Data models
Indexes
Organizations
Performance gain
Predictive models
Standards organizations
Systems architecture
Throughput
Topology
Title LearnGraph: A Learning-Based Architecture for Dynamic Graph Processing
URI https://ieeexplore.ieee.org/document/11133339
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4I8eBJjRjf6cFrgXZ3W-oNRfRgCAdiuJGd7dR4AYPg73daFh8HD_bUNNP0OZnp4_sG4FrzqSKzVMjMVT2ZV6hYpYyTvksUrHFIib74-cmORr3p1I1rsHrCwhBR-nxG7ZhNb_l-Ua3jVVknhkXn5BrQsNZuwFo16ld1XWfQv-PdlEf4iS7aW-FfYVOS1Rju_7O9A2h94-_E-MuyHMIOzY9gmKhQHyLB9I3oi5oY9UXesh3yov_jQUCwIyoGm1DzIlUQNR6A5VswGd5P7h5lHQVBlqwsK6nQZ0FFvKtDU5VKuVIjsqIGE3JnfEEYAloet1XcrUhBZlAVpTMuePYnjqE5X8zpBARiZqrIv4VlnhPmpfWhcJrYAyIdutkptOIczN42PBez7fDP_ig_h7040_HjlNYX0Fwt13QJu9XH6vV9eZVW5xOa0JFH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omuhJjRjf9uC1QLvdLvWGIGJEwoEYbmS7nRovYBD8_U7L4uPgwZ6aZpo-JzN9fN8AXEs6VSQZpjwxRZOrwgpSKW24ayD6TBuLkb74uZ8NBs3x2AxLsHrEwiBi_HyGtZCNb_luVizDVVk9hEWnZDZhK1VKihVcq8T9ioapd1pt2k8qAFBkWluL_wqcEu1Gd--fLe5D9RuBx4ZftuUANnB6CN1IhnofKKZvWIuV1Kgv_JYskWOtH08CjFxR1lkFm2exAisRASRfhVH3btTu8TIOAs9JXRZcWJd4ERCvxuoiF8Lk0lpSVa-9MtqlaL23GY07E9StQEKmrUhzo4135FEcQWU6m-IxMGsTXQQGLpsrhVblmfOpkUg-EErfSE6gGuZg8rZiupish3_6R_kV7PRGT_1J_2HweAa7YdbDNyopz6GymC_xAraLj8Xr-_wyrtQnWqaUjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=LearnGraph%3A+A+Learning-Based+Architecture+for+Dynamic+Graph+Processing&rft.au=Zhang%2C+Lingling&rft.au=Wu%2C+Yijian&rft.au=Jiang%2C+Hong&rft.au=Zhou%2C+Ziyu&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11133339&rft.externalDocID=11133339