AttenPIM: Accelerating LLM Attention with Dual-mode GEMV in Processing-in-Memory

Large Language Models (LLMs) have demonstrated unprecedented generative performance across a wide range of applications. While recent heterogeneous architectures attempt to address the memory-bound bottleneck from attention computations by processing-in-memory (PIM) offloading, they overlook two cri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7
Hauptverfasser: Chen, Liyan, Lyu, Dongxu, Li, Zhenyu, Jiang, Jianfei, Wang, Qin, Mao, Zhigang, Jing, Naifeng
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 22.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!