AttenPIM: Accelerating LLM Attention with Dual-mode GEMV in Processing-in-Memory
Large Language Models (LLMs) have demonstrated unprecedented generative performance across a wide range of applications. While recent heterogeneous architectures attempt to address the memory-bound bottleneck from attention computations by processing-in-memory (PIM) offloading, they overlook two cri...
Gespeichert in:
| Veröffentlicht in: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
22.06.2025
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!