TauPad: Test Data Augmentation of Point Clouds by Adversarial Mutation
Point clouds have been widely used in a large number of application scenarios to handle with various deep learning (DL) tasks. Testing is an essential means to guarantee the robustness of DL models, which places high demands on test data. Therefore, it is crucial to design a reliable and effective t...
Uloženo v:
| Vydáno v: | 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion) s. 212 - 216 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Point clouds have been widely used in a large number of application scenarios to handle with various deep learning (DL) tasks. Testing is an essential means to guarantee the robustness of DL models, which places high demands on test data. Therefore, it is crucial to design a reliable and effective test data augmentation tool of point clouds to generate high-quality data to test the robustness of the target model. However, although common mutation methods can increase the amount of point clouds, the quality of the augmented data still needs to be improved based on the specify of the spatial structure of the point clouds. In this paper, we develop a point clouds augmentation tool, namely TauPad, of which the specific mutation direction is guided by adversarial attacks. Based on the point clouds pre-processing, point clouds adversarial mutation, and spatial distribution restoration, TauPad can generate augmented test data that are significantly deceptive to the target model. Preliminary experiments show that TauPad can reliably and effectively augment point clouds for testing. Its video is at https://youtu.be/Y9nDIEW13_g/ and TauPad can be used at http://1.13.193.98:2600/. |
|---|---|
| AbstractList | Point clouds have been widely used in a large number of application scenarios to handle with various deep learning (DL) tasks. Testing is an essential means to guarantee the robustness of DL models, which places high demands on test data. Therefore, it is crucial to design a reliable and effective test data augmentation tool of point clouds to generate high-quality data to test the robustness of the target model. However, although common mutation methods can increase the amount of point clouds, the quality of the augmented data still needs to be improved based on the specify of the spatial structure of the point clouds. In this paper, we develop a point clouds augmentation tool, namely TauPad, of which the specific mutation direction is guided by adversarial attacks. Based on the point clouds pre-processing, point clouds adversarial mutation, and spatial distribution restoration, TauPad can generate augmented test data that are significantly deceptive to the target model. Preliminary experiments show that TauPad can reliably and effectively augment point clouds for testing. Its video is at https://youtu.be/Y9nDIEW13_g/ and TauPad can be used at http://1.13.193.98:2600/. |
| Author | Liu, Guandi Zhang, Xufan Zhang, Quanjun Fang, Chunrong Liu, Jiawei |
| Author_xml | – sequence: 1 givenname: Guandi surname: Liu fullname: Liu, Guandi organization: Nanjing University,State Key Laboratory for Novel Software Technology,China – sequence: 2 givenname: Jiawei surname: Liu fullname: Liu, Jiawei organization: Nanjing University,State Key Laboratory for Novel Software Technology,China – sequence: 3 givenname: Quanjun surname: Zhang fullname: Zhang, Quanjun organization: Nanjing University,State Key Laboratory for Novel Software Technology,China – sequence: 4 givenname: Chunrong surname: Fang fullname: Fang, Chunrong email: fangchunrong@nju.edu.cn organization: Nanjing University,State Key Laboratory for Novel Software Technology,China – sequence: 5 givenname: Xufan surname: Zhang fullname: Zhang, Xufan organization: Nanjing University,State Key Laboratory for Novel Software Technology,China |
| BookMark | eNotzLFOwzAQgGEjwQClMwOLXyDFzp1jmy0KtCAV0SHM1aU-o0hpghIHqW9PpTL9y6f_Tlz3Q89CPGi10hrNExit0ODqXKuMuhJLb50uCoPeeKdvxbqmeUfhWdY8JflCiWQ5fx-5T5TaoZdDlLuh7ZOsumEOk2xOsgy_PE40ttTJj_ni7sVNpG7i5X8X4mv9Wldv2fZz816V24y0tSlDR5grlaNV3moIJkaI0HB0EKxjaNxBkdI5MQI5IoVgDxxtLDyfoYaFeLx8W2be_4ztkcbT3lsPFhH-AJU9R2E |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1145/3510454.3517050 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665495981 1665495987 |
| EndPage | 216 |
| ExternalDocumentID | 9793744 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-a177t-48a420024709713d5ff3f3bef83d78e3b8c0a012ae43a8aa0437cef7f69e3f313 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000850203800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Thu Jan 18 11:13:20 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a177t-48a420024709713d5ff3f3bef83d78e3b8c0a012ae43a8aa0437cef7f69e3f313 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9793744 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-May |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-May |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion) |
| PublicationTitleAbbrev | ICSE-COMPANION |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8027241 |
| Snippet | Point clouds have been widely used in a large number of application scenarios to handle with various deep learning (DL) tasks. Testing is an essential means to... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 212 |
| SubjectTerms | Data models Manuals Measurement Point cloud compression Reliability engineering Robustness Software and its engineering → Software testing and debugging Software testing |
| Title | TauPad: Test Data Augmentation of Point Clouds by Adversarial Mutation |
| URI | https://ieeexplore.ieee.org/document/9793744 |
| WOSCitedRecordID | wos000850203800044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zePCksom_ycGj3dombRJvMh1eHD1M2G28Ji8y0Fa2VvC_N8nK9ODFU0J4EJI88vLjfd9HyI1MGcZgRaQhwYhnNo0UuluKSqQ1zLhDvi2D2ISYzeRioYoeud1hYRAxJJ_hyFfDX76pdeufysbKk7lxvkf2hMi3WK2OrSfh2Zg59-IZH7lSxB5H_0suJUSL6eH_-jkiwx_YHS12AeWY9LAakOkc2gLMHZ27_Zs-QAP0vn197yBDFa0tLepV1dDJW92aDS2_aBBZ3oB3Lfrcbu2G5GX6OJ88RZ34QQSJEE3EJXCfQMGFZ3liJrOWWVailcwIiayUOgYXXQA5AwngOYo0WmFzhc4wYSekX9UVnhJaKpvHyCTk7vKQigw0T6xSHLTMrCzlGRn4OVh-bPktlt3wz_9uviAHqYcAhKS_S9Jv1i1ekX392aw26-uwKN_IkI-M |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zCnpS2cTf5uDRbm2TLIk3UcfEbfRQYbfx2r7IQFvZWsH_3qQr04MXTwnhQUjyyMuP930fIdcqZOiDkV4KAXpcmNDTaG8pOlAmY5k95JukFpuQ06mazXTUIjcbLAwi1sln2HPV-i8_K9LKPZX1tSNz43yLbAvOQ3-N1mr4egIu-sw6GBe8Z0vpOyT9L8GUOl4M9__X0wHp_gDvaLQJKYekhXmHDGOoIshuaWx3cPoAJdC76vW9AQ3ltDA0KhZ5Se_fiipb0eSL1jLLK3DORSfV2q5LXoaP8f3Ia-QPPAikLD2ugLsUCi4dzxPLhDHMsASNYplUyBKV-mDjCyBnoAAcS1GKRpqBRmsYsCPSzoscjwlNtBn4yBQM7PUhlAJSHhitOaRKGJWoE9JxczD_WDNczJvhn_7dfEV2R_FkPB8_TZ_PyF7oAAF1CuA5aZfLCi_ITvpZLlbLy3qBvgFxfZLT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+44th+International+Conference+on+Software+Engineering%3A+Companion+Proceedings+%28ICSE-Companion%29&rft.atitle=TauPad%3A+Test+Data+Augmentation+of+Point+Clouds+by+Adversarial+Mutation&rft.au=Liu%2C+Guandi&rft.au=Liu%2C+Jiawei&rft.au=Zhang%2C+Quanjun&rft.au=Fang%2C+Chunrong&rft.date=2022-05-01&rft.pub=IEEE&rft.spage=212&rft.epage=216&rft_id=info:doi/10.1145%2F3510454.3517050&rft.externalDocID=9793744 |