Banach embedding properties of non-commutative Lp-spaces
Let $\mathcal N$ and $\mathcal M$ be von Neumann algebras. It is proved that $L^p(\mathcal N)$ does not linearly topologically embed in $L^p(\mathcal M)$ for $\mathcal N$ infinite, $\mathcal M$ finite, $1\le p<2$. The following considerably stronger result is obtained (which implies this, since t...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | eBook Book |
| Language: | English |
| Published: |
Providence, R.I
American Mathematical Society
2003
|
| Series: | Memoirs of the American Mathematical Society |
| Subjects: | |
| ISBN: | 0821832719, 9780821832714 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Let $\mathcal N$ and $\mathcal M$ be von Neumann algebras. It is proved that $L^p(\mathcal N)$ does not linearly topologically embed in $L^p(\mathcal M)$ for $\mathcal N$ infinite, $\mathcal M$ finite, $1\le p<2$. The following considerably stronger result is obtained (which implies this, since the Schatten $p$-class $C_p$ embeds in $L^p(\mathcal N)$ for $\mathcal N$ infinite). Theorem. Let $1\le p<2$ and let $X$ be a Banach space with a spanning set $(x_{ij})$ so that for some $C\ge 1$, (i) any row or column is $C$-equivalent to the usual $\ell^2$-basis, (ii) $(x_{i_k,j_k})$ is $C$-equivalent to the usual $\ell^p$-basis, for any $i_1\le i_2 \le\cdots$ and $j_1\le j_2\le \cdots$. Then $X$ is not isomorphic to a subspace of $L^p(\mathcal M)$, for $\mathcal M$ finite.Complements on the Banach space structure of non-commutative $L^p$-spaces are obtained, such as the $p$-Banach-Saks property and characterizations of subspaces of $L^p(\mathcal M)$ containing $\ell^p$ isomorphically. The spaces $L^p(\mathcal N)$ are classified up to Banach isomorphism (i.e., linear homeomorphism), for $\mathcal N$ infinite-dimensional, hyperfinite and semifinite, $1\le p<\infty$, $p\ne 2$. It is proved that there are exactly thirteen isomorphism types; the corresponding embedding properties are determined for $p<2$ via an eight level Hasse diagram. It is also proved for all $1\le p<\infty$ that $L^p(\mathcal N)$ is completely isomorphic to $L^p(\mathcal M)$ if $\mathcal N$ and $\mathcal M$ are the algebras associated to free groups, or if $\mathcal N$ and $\mathcal M$ are injective factors of type III$_\lambda$ and III$_{\lambda'}$ for $0<\lambda$, $\lambda'\le 1$. |
|---|---|
| AbstractList | Let $\mathcal N$ and $\mathcal M$ be von Neumann algebras. It is proved that $L^p(\mathcal N)$ does not linearly topologically embed in $L^p(\mathcal M)$ for $\mathcal N$ infinite, $\mathcal M$ finite, $1\le p<2$. The following considerably stronger result is obtained (which implies this, since the Schatten $p$-class $C_p$ embeds in $L^p(\mathcal N)$ for $\mathcal N$ infinite). Theorem. Let $1\le p<2$ and let $X$ be a Banach space with a spanning set $(x_{ij})$ so that for some $C\ge 1$, (i) any row or column is $C$-equivalent to the usual $\ell^2$-basis, (ii) $(x_{i_k,j_k})$ is $C$-equivalent to the usual $\ell^p$-basis, for any $i_1\le i_2 \le\cdots$ and $j_1\le j_2\le \cdots$. Then $X$ is not isomorphic to a subspace of $L^p(\mathcal M)$, for $\mathcal M$ finite.Complements on the Banach space structure of non-commutative $L^p$-spaces are obtained, such as the $p$-Banach-Saks property and characterizations of subspaces of $L^p(\mathcal M)$ containing $\ell^p$ isomorphically. The spaces $L^p(\mathcal N)$ are classified up to Banach isomorphism (i.e., linear homeomorphism), for $\mathcal N$ infinite-dimensional, hyperfinite and semifinite, $1\le p<\infty$, $p\ne 2$. It is proved that there are exactly thirteen isomorphism types; the corresponding embedding properties are determined for $p<2$ via an eight level Hasse diagram. It is also proved for all $1\le p<\infty$ that $L^p(\mathcal N)$ is completely isomorphic to $L^p(\mathcal M)$ if $\mathcal N$ and $\mathcal M$ are the algebras associated to free groups, or if $\mathcal N$ and $\mathcal M$ are injective factors of type III$_\lambda$ and III$_{\lambda'}$ for $0<\lambda$, $\lambda'\le 1$. |
| Author | Sukochev, F. A. Haagerup, U. Rosenthal, Haskell P. |
| Author_xml | – sequence: 1 fullname: Haagerup, U. – sequence: 2 fullname: Rosenthal, Haskell P. – sequence: 3 fullname: Sukochev, F. A. |
| BackLink | https://cir.nii.ac.jp/crid/1130000797291031808$$DView record in CiNii |
| BookMark | eNo9j8FOwzAQRI2gEqT0H3LgwiGS1-tm7SNUQJEqcYFz5ThrGprEUR3K75OqiD3MHmY0o5eJqz72fCEy0CS1RNL2UmTSKDCoCOxMZEpKnCyNcC0WKX3J6SxILM2NMI-ud36Xc1dxXTf9Zz4c4sCHseGUx5BP5YWPXfc9urE5cr4ZijQ4z-lWzIJrEy_-_lx8PD-9r9bF5u3ldfWwKRxQaU2B2lHlnQTjuHZBogqeuVp60EEREpmgoKyXFnRtpCGvpasBlbEYSiaci_tzr0t7_km72I5pe2y5inGftpbMP7eesnfnbN80W9-cFABPuGRJnZBhmsBfz5lTew |
| ContentType | eBook Book |
| DBID | RYH |
| DEWEY | 515/.73 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 1470403749 9781470403744 |
| ExternalDocumentID | 9781470403744 BA61826030 |
| GroupedDBID | 38. 50G AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AERYV AFOJC AHWGJ AJFER ALMA_UNASSIGNED_HOLDINGS AZZ BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a17698-34a7bca018aedaf032fceeb5c14f273778f216d5914d8087c40ad132893f6e73 |
| ISBN | 0821832719 9780821832714 |
| IngestDate | Fri Nov 08 05:37:51 EST 2024 Thu Jun 26 23:02:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2003040431 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a17698-34a7bca018aedaf032fceeb5c14f273778f216d5914d8087c40ad132893f6e73 |
| Notes | May 2003, volume 163, number 776 (third of 5 numbers) Includes bibliographical references (p. 67-68) |
| PageCount | 67 |
| ParticipantIDs | askewsholts_vlebooks_9781470403744 nii_cinii_1130000797291031808 |
| PublicationCentury | 2000 |
| PublicationDate | 2003 2003-03-15 |
| PublicationDateYYYYMMDD | 2003-01-01 2003-03-15 |
| PublicationDate_xml | – year: 2003 text: 2003 |
| PublicationDecade | 2000 |
| PublicationPlace | Providence, R.I |
| PublicationPlace_xml | – name: Providence, R.I |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2003 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0000910368 |
| Score | 1.8913813 |
| Snippet | Let $\mathcal N$ and $\mathcal M$ be von Neumann algebras. It is proved that $L^p(\mathcal N)$ does not linearly topologically embed in $L^p(\mathcal M)$ for... |
| SourceID | askewsholts nii |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Lp spaces Noncommutative function spaces Normed linear spaces Von Neumann algebras |
| Title | Banach embedding properties of non-commutative Lp-spaces |
| URI | https://cir.nii.ac.jp/crid/1130000797291031808 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470403744&uid=none |
| Volume | 163 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB40erAnn_iqBPEmKU2TZjfHKtWCRQVb8Vb2kcWipsW01Z_vTBI22ot48LIkG7KbnQmz89j5BuAMTQ7cJHXLM9qggcJk2-PKDz1fGdyulJBRXu7tsc9ub_nTU3xfoi5keTkBlqb88zOe_iursQ-ZTamzf2C3HRQ78BqZji2yHdsljdjeljFZkVJyVPImE62LJPPJlI5NF7iyaOd7itJBZgXWd3_qoTRR1RnCniA8i3lesG7YqCIxlJ70LArQa5G95M4--_hh_kI1txa5Etw47zR-uBGCJTdCFR-yaLGERjKxcCTW5kSdgcQAK3I_l8CqLzoRGSwoOVZhFS0ZB9auu3fDG-v2IvUkiHiOxFmOE5c4SHbcGtRoNR8Zyv9Zhpt-Oh5_2_QHm-BQIsgWrCTpNtSqL852gBe0di2t3YrW7sS4S7R2La13YXjVHVz2vLIGhSd8FsXcC0LBpBJNn4tEC9MMWgb1CtnGH9qg6scYNy0_0u3YDzWugamwKTSa-KgHmihhwR44OGeyD65RTS6TKJBcxiG-znlAOSB-K4ol41odwOm3ZY8Wr3m4PBvlqGQMhW3AwvAA6kiNkRpT61MsEpW8GC0kKteB8x_-8vwINiruH4Mze58ndVhXi9k4ez8pufUFivQg6w |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Banach+embedding+properties+of+non-commutative+Lp-spaces&rft.au=Haagerup%2C+U.&rft.au=Rosenthal%2C+Haskell+P.&rft.au=Sukochev%2C+F.+A.&rft.date=2003-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9780821832714&rft.externalDocID=BA61826030 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470403744.jpg |

