Banach embedding properties of non-commutative Lp-spaces

Let $\mathcal N$ and $\mathcal M$ be von Neumann algebras. It is proved that $L^p(\mathcal N)$ does not linearly topologically embed in $L^p(\mathcal M)$ for $\mathcal N$ infinite, $\mathcal M$ finite, $1\le p<2$. The following considerably stronger result is obtained (which implies this, since t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haagerup, U., Rosenthal, Haskell P., Sukochev, F. A.
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Providence, R.I American Mathematical Society 2003
Schriftenreihe:Memoirs of the American Mathematical Society
Schlagworte:
ISBN:0821832719, 9780821832714
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Let $\mathcal N$ and $\mathcal M$ be von Neumann algebras. It is proved that $L^p(\mathcal N)$ does not linearly topologically embed in $L^p(\mathcal M)$ for $\mathcal N$ infinite, $\mathcal M$ finite, $1\le p<2$. The following considerably stronger result is obtained (which implies this, since the Schatten $p$-class $C_p$ embeds in $L^p(\mathcal N)$ for $\mathcal N$ infinite). Theorem. Let $1\le p<2$ and let $X$ be a Banach space with a spanning set $(x_{ij})$ so that for some $C\ge 1$, (i) any row or column is $C$-equivalent to the usual $\ell^2$-basis, (ii) $(x_{i_k,j_k})$ is $C$-equivalent to the usual $\ell^p$-basis, for any $i_1\le i_2 \le\cdots$ and $j_1\le j_2\le \cdots$. Then $X$ is not isomorphic to a subspace of $L^p(\mathcal M)$, for $\mathcal M$ finite.Complements on the Banach space structure of non-commutative $L^p$-spaces are obtained, such as the $p$-Banach-Saks property and characterizations of subspaces of $L^p(\mathcal M)$ containing $\ell^p$ isomorphically. The spaces $L^p(\mathcal N)$ are classified up to Banach isomorphism (i.e., linear homeomorphism), for $\mathcal N$ infinite-dimensional, hyperfinite and semifinite, $1\le p<\infty$, $p\ne 2$. It is proved that there are exactly thirteen isomorphism types; the corresponding embedding properties are determined for $p<2$ via an eight level Hasse diagram. It is also proved for all $1\le p<\infty$ that $L^p(\mathcal N)$ is completely isomorphic to $L^p(\mathcal M)$ if $\mathcal N$ and $\mathcal M$ are the algebras associated to free groups, or if $\mathcal N$ and $\mathcal M$ are injective factors of type III$_\lambda$ and III$_{\lambda'}$ for $0<\lambda$, $\lambda'\le 1$.
AbstractList Let $\mathcal N$ and $\mathcal M$ be von Neumann algebras. It is proved that $L^p(\mathcal N)$ does not linearly topologically embed in $L^p(\mathcal M)$ for $\mathcal N$ infinite, $\mathcal M$ finite, $1\le p<2$. The following considerably stronger result is obtained (which implies this, since the Schatten $p$-class $C_p$ embeds in $L^p(\mathcal N)$ for $\mathcal N$ infinite). Theorem. Let $1\le p<2$ and let $X$ be a Banach space with a spanning set $(x_{ij})$ so that for some $C\ge 1$, (i) any row or column is $C$-equivalent to the usual $\ell^2$-basis, (ii) $(x_{i_k,j_k})$ is $C$-equivalent to the usual $\ell^p$-basis, for any $i_1\le i_2 \le\cdots$ and $j_1\le j_2\le \cdots$. Then $X$ is not isomorphic to a subspace of $L^p(\mathcal M)$, for $\mathcal M$ finite.Complements on the Banach space structure of non-commutative $L^p$-spaces are obtained, such as the $p$-Banach-Saks property and characterizations of subspaces of $L^p(\mathcal M)$ containing $\ell^p$ isomorphically. The spaces $L^p(\mathcal N)$ are classified up to Banach isomorphism (i.e., linear homeomorphism), for $\mathcal N$ infinite-dimensional, hyperfinite and semifinite, $1\le p<\infty$, $p\ne 2$. It is proved that there are exactly thirteen isomorphism types; the corresponding embedding properties are determined for $p<2$ via an eight level Hasse diagram. It is also proved for all $1\le p<\infty$ that $L^p(\mathcal N)$ is completely isomorphic to $L^p(\mathcal M)$ if $\mathcal N$ and $\mathcal M$ are the algebras associated to free groups, or if $\mathcal N$ and $\mathcal M$ are injective factors of type III$_\lambda$ and III$_{\lambda'}$ for $0<\lambda$, $\lambda'\le 1$.
Author Sukochev, F. A.
Haagerup, U.
Rosenthal, Haskell P.
Author_xml – sequence: 1
  fullname: Haagerup, U.
– sequence: 2
  fullname: Rosenthal, Haskell P.
– sequence: 3
  fullname: Sukochev, F. A.
BackLink https://cir.nii.ac.jp/crid/1130000797291031808$$DView record in CiNii
BookMark eNo9j8FOwzAQRI2gEqT0H3LgwiGS1-tm7SNUQJEqcYFz5ThrGprEUR3K75OqiD3MHmY0o5eJqz72fCEy0CS1RNL2UmTSKDCoCOxMZEpKnCyNcC0WKX3J6SxILM2NMI-ud36Xc1dxXTf9Zz4c4sCHseGUx5BP5YWPXfc9urE5cr4ZijQ4z-lWzIJrEy_-_lx8PD-9r9bF5u3ldfWwKRxQaU2B2lHlnQTjuHZBogqeuVp60EEREpmgoKyXFnRtpCGvpasBlbEYSiaci_tzr0t7_km72I5pe2y5inGftpbMP7eesnfnbN80W9-cFABPuGRJnZBhmsBfz5lTew
ContentType eBook
Book
DBID RYH
DEWEY 515/.73
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1470403749
9781470403744
ExternalDocumentID 9781470403744
BA61826030
GroupedDBID 38.
50G
AABBV
AAWPO
ABARN
ABQPQ
ACLGV
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a17698-34a7bca018aedaf032fceeb5c14f273778f216d5914d8087c40ad132893f6e73
ISBN 0821832719
9780821832714
IngestDate Fri Nov 08 05:37:51 EST 2024
Thu Jun 26 23:02:15 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2003040431
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a17698-34a7bca018aedaf032fceeb5c14f273778f216d5914d8087c40ad132893f6e73
Notes May 2003, volume 163, number 776 (third of 5 numbers)
Includes bibliographical references (p. 67-68)
PageCount 67
ParticipantIDs askewsholts_vlebooks_9781470403744
nii_cinii_1130000797291031808
PublicationCentury 2000
PublicationDate 2003
2003-03-15
PublicationDateYYYYMMDD 2003-01-01
2003-03-15
PublicationDate_xml – year: 2003
  text: 2003
PublicationDecade 2000
PublicationPlace Providence, R.I
PublicationPlace_xml – name: Providence, R.I
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2003
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssj0000910368
Score 1.8913813
Snippet Let $\mathcal N$ and $\mathcal M$ be von Neumann algebras. It is proved that $L^p(\mathcal N)$ does not linearly topologically embed in $L^p(\mathcal M)$ for...
SourceID askewsholts
nii
SourceType Aggregation Database
Publisher
SubjectTerms Lp spaces
Noncommutative function spaces
Normed linear spaces
Von Neumann algebras
Title Banach embedding properties of non-commutative Lp-spaces
URI https://cir.nii.ac.jp/crid/1130000797291031808
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470403744&uid=none
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwED90-uCe_MSvSRHfpKNdsyR9nOIHKCroxLeRJikOtRt2m_753rUl1b2ID76ENoG0uYPL73K53wEc2ShMEhVK37Ag8VnHSF8pbJKIolCSm7S4IPt4LW5u5NNTfFexLuRFOQGRZfLzMx7_q6qxD5VNqbN_ULebFDvwGZWOLaod2zlE7F6rmKzKKDnKviXWmDLJfDSma9Mlryz6-b6mdJBJyfV9PfbRmuj6DuGlIj6LaVGwrt-uIzGUnvSsStJrlb8Uh31u-H76QjW3ZgUIbh_32j-OEaK5Y4Q6PuTYYomNZOToSJzPiZiBzIAocz_nyKpPepwcFrQci7CInkwDli7ObvtX7tiL4EnEZcHEWc0TVzxIbt4mNGk1Hzna_0mOm342HH7b9B9WoUGJIGuwYLN1aNZ_nG-ALGXtOVl7tay9UerNydpzst6E_vnZw-mlX9Wg8FUoeCz9iCmRaBWEUlmj0iDqpIgrkq4OWYrQTwiZdkJuunHIDK5BaBYogy4-4sCUWxFtQQO_abfBo9u6vEOMg4llmhvEtryrtLY6Dpi1cgcOvy17MHstwuX5oGAlE2hsI8HYDrRQGgM9pDakWCSCvBg9JCrXgd_f_WV8D1Zq7e9DY_I-tS1Y1rPJMH8_qLT1BSGtIX0
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Banach+embedding+properties+of+non-commutative+Lp-spaces&rft.au=Haagerup%2C+U.&rft.au=Rosenthal%2C+Haskell+P.&rft.au=Sukochev%2C+F.+A.&rft.date=2003-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9780821832714&rft.externalDocID=BA61826030
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470403744.jpg