Computational learning approaches to data analytics in biomedical applications

Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Al-Jabery, Khalid, Obafemi-Ajayi, Tayo, Olbricht, Gayla, Wunsch, Donald C.
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Amsterdam Academic Press 2020
Elsevier Science & Technology
Ausgabe:1
Schlagworte:
ISBN:9780128144824, 0128144823
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained.
AbstractList Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained.
Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques.
Author Olbricht, Gayla
Wunsch, Donald C.
Al-Jabery, Khalid
Obafemi-Ajayi, Tayo
Author_xml – sequence: 1
  fullname: Al-Jabery, Khalid
– sequence: 2
  fullname: Obafemi-Ajayi, Tayo
– sequence: 3
  fullname: Olbricht, Gayla
– sequence: 4
  fullname: Wunsch, Donald C.
BackLink https://cir.nii.ac.jp/crid/1130848327501016064$$DView record in CiNii
BookMark eNpVkLtPwzAQxo14CFo6s2ZAQgwBnx-xM0JUHlIFC2KNHOdCTdO41C6I_x6XsrB89_rdJ92NyMHgByTkDOgVUCiuK5Y0pzkVBee53iOTUmkKTIMQmsP-v5qJIzICYCVjPHWPySSEd0opk5RKJU_IU-WXq0000fnB9FmPZj244S0zq9XaGzvHkEWftSaazCTgOzobMjdkjfNLbJ1NOwntU7J1CKfksDN9wMlfHJPXu-lL9ZDPnu8fq5tZbkCBlnmBKE3XdFaVlkJrEFUBjdLMSi5FI6QCBK1smjMJFikK2TJTAAipDev4mFzujE1Y4FeY-z6G-rPHxvtFqP99JLEXOzad9LHBEOtfzOIQ16avp7eVLDVXskjk-Y4cnKut2yoApzrZMCXp9v-0EPwH4JVwLw
ContentType eBook
Book
DBID RYH
DEWEY 610.285631
DOI 10.1016/C2016-0-04633-8
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISBN 9780128144831
0128144831
Edition 1
ExternalDocumentID 9780128144831
EBC5983756
BB2964846X
GroupedDBID 38.
AAAAS
AABBV
AABFR
AAJFB
AAJIE
AAKZG
AALRI
AAWMN
AAXUO
AAZNM
ABGWT
ABLXK
ABQQC
ACDGK
ACKCA
ADCEY
AEIUV
AEYWH
ALMA_UNASSIGNED_HOLDINGS
APVFW
BBABE
CETPU
CZZ
HGY
RYH
SDK
SRW
AGGMV
ADVEM
ALBLE
GEOUK
ID FETCH-LOGICAL-a17185-6ee5afbfc79c01daee761b782c5354b4571e187cc79251ce0e45d2a611458a2f3
ISBN 9780128144824
0128144823
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000552900100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Fri Nov 08 04:52:13 EST 2024
Wed Nov 12 00:42:23 EST 2025
Thu Jun 26 23:12:09 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident R858 .A453 2020
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a17185-6ee5afbfc79c01daee761b782c5354b4571e187cc79251ce0e45d2a611458a2f3
OCLC 1129223780
PQID EBC5983756
PageCount 312
ParticipantIDs askewsholts_vlebooks_9780128144831
proquest_ebookcentral_EBC5983756
nii_cinii_1130848327501016064
PublicationCentury 2000
PublicationDate c2020
2019
2019-11-20
PublicationDateYYYYMMDD 2020-01-01
2019-01-01
2019-11-20
PublicationDate_xml – year: 2020
  text: c2020
PublicationDecade 2020
2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Chantilly
PublicationYear 2020
2019
Publisher Academic Press
Elsevier Science & Technology
Publisher_xml – name: Academic Press
– name: Elsevier Science & Technology
SSID ssj0002500575
Score 2.3604887
Snippet Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine...
SourceID askewsholts
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Big data
Bioinformatics
Biomedical engineering
Biomedical engineering -- Data processing
Computational biology
Computational learning theory
Medicine
Medicine -- Data processing
TableOfContents 9.2.1.2 Reading data as formatted tables -- 9.2.1.3 Reading data as cellular arrays -- 9.2.1.4 Reading data as numerical arrays and matrices -- 9.2.1.4.1 xlsread function -- 9.2.1.4.2 Functions for reading in data from text files as numerical arrays/matrices -- 9.2.1.4.3 Reading images in MATLAB -- 9.2.2 Reading data in Python -- 9.2.2.1 Overview of external libraries and modules for Python -- 9.2.2.2 Opening files in Python -- 9.2.2.2.1 Reading text files in Python -- 9.2.2.2.2 read_csv() function -- 9.2.2.2.3 Other read functions -- 9.2.3 Handling big data in MATLAB -- 9.2.3.1 How to create data stores in MATLAB -- 9.2.3.1.1 read function -- 9.2.3.1.2 readall function -- 9.2.3.1.3 hasdata function -- 9.2.3.1.4 partition function -- 9.2.3.1.5 numpartitions function -- 9.2.3.2 Tall arrays -- 9.3 Data preprocessing -- 9.3.1 Missing values handling -- 9.3.1.1 Handling missing values during reading -- 9.3.1.2 Finding and replacing missing values -- 9.3.2 Normalization -- 9.3.2.1 z-score -- 9.3.3 Outliers detection -- 9.4 Tools and functions for implementing machine learning algorithms -- 9.4.1 Clustering -- 9.4.1.1 k-means -- 9.4.1.2 Gaussian mixture model -- 9.4.1.3 Hierarchical clustering -- 9.4.1.4 Self-organizing map -- 9.4.2 Prediction and classification -- 9.4.2.1 Machine learning workflow -- 9.4.2.1.1 Data Preparation -- 9.4.2.1.2 Fitting and predicting tools -- 9.4.2.2 Multiclass support vector machines -- 9.4.2.3 Neural network classifier -- 9.4.2.4 Performance evaluation and cross-validation tools -- 9.4.3 Features reduction and features selection tools in MATLAB -- 9.4.3.1 Built-in feature selection method -- 9.4.3.2 Sequential features selection -- 9.4.4 Features reduction and features selection tools in Python -- 9.4.4.1 Removing features with low variance -- 9.4.4.2 Recursive feature elimination -- 9.5 Visualization
Front Cover -- Computational Learning Approaches to Data Analytics in Biomedical Applications -- Computational Learning Approaches to Data Analytics in Biomedical Applications -- Copyright -- Contents -- Preface and Acknowledgements -- 1 - Introduction -- References -- 2 - Data preprocessing -- 2.1 Introduction -- 2.2 Data preparation -- 2.2.1 Initial cleansing -- 2.2.2 Data imputation and missing values algorithms -- 2.2.2.1 Removal Methods -- 2.2.2.2 Utilization methods -- 2.2.2.3 Maximum likelihood -- 2.2.3 Imputation methods -- 2.2.3.1 Single imputation methods -- 2.2.3.1.1 Mean imputation -- 2.2.3.1.2 Substitution of related observations -- 2.2.3.1.3 Random selection -- 2.2.3.1.4 Weighted K-nearest neighbors (KNN) imputation -- 2.2.3.2 Multiple imputation -- 2.2.4 Feature enumeration -- 2.2.4.1 Special cases of categorical data representation using COBRIT traumatic brain injury data as an example -- 2.2.5 Detecting and removing redundant features -- 2.2.5.1 Pearson correlation -- 2.2.5.2 Spearman correlation -- 2.2.6 Recoding categorical features -- 2.2.7 Outlier detection -- 2.2.8 Normalization -- 2.2.9 Domain experts -- 2.2.10 Feature selection and extraction -- 2.3 Example -- 2.4 Summary -- References -- 3 - Clustering algorithms -- 3.1 Introduction -- 3.2 Proximity measures -- 3.3 Clustering algorithms -- 3.3.1 Hierarchical clustering -- 3.3.2 Density-based clustering -- 3.3.3 Subspace clustering -- 3.3.3.1 Basic subspace clustering -- 3.3.3.1.1 Grid-based subspace clustering -- 3.3.3.1.2 Window-based subspace clustering -- 3.3.3.1.3 Density-based subspace clustering -- 3.3.3.2 Advanced subspace clustering -- 3.3.3.2.1 3D subspace clustering -- 3.3.4 Squared error-based clustering -- 3.3.5 Fuzzy clustering -- 3.3.6 Evolutionary computational technology-based clustering -- 3.3.7 Neural network-based clustering
9.5.1 Multidimensional scaling -- 9.5.1.1 Pairwise distance calculation function pdist -- 9.5.1.2 Perform multidimensional scaling -- 9.5.2 Principal component analysis -- 9.5.3 Visualization functions -- 9.6 Clusters and classification evaluation functions -- 9.6.1 Cluster evaluation -- 9.6.2 Classification models evaluation -- 9.6.2.1 Confusion matrix confusionmat -- 9.7 Summary -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X -- Back Cover
3.3.8 Kernel learning-based clustering -- 3.3.9 Large-scale data clustering -- 3.3.10 High-dimensional data clustering -- 3.3.11 Sequential data clustering -- 3.3.11.1 Proximity-based sequence clustering -- 3.3.11.2 Feature-based sequence clustering -- 3.3.11.3 Model-based sequence clustering -- 3.4 Adaptive resonance theory -- 3.4.1 Fuzzy ART -- 3.4.2 Fuzzy ARTMAP -- 3.4.3 BARTMAP -- 3.5 Summary -- References -- 4 - Selected approaches to supervised learning -- 4.1 Backpropagation and related approaches -- 4.1.1 Backpropagation -- 4.1.2 Backpropagation through time -- 4.2 Recurrent neural networks -- 4.3 Long short-term memory -- 4.4 Convolutional neural networks and deep learning -- 4.4.1 Structure of convolutional neural network -- 4.4.2 Deep belief networks -- 4.4.3 Variational autoencoders -- 4.5 Random forest, classification and Regression Tree, and related approaches -- 4.6 Summary -- References -- 5 - Statistical analysis tools -- 5.1 Introduction -- 5.2 Tools for determining an appropriate analysis -- 5.3 Statistical applications in cluster analysis -- 5.3.1 Cluster evaluation tools: analyzing individual features -- 5.3.1.1 Hypothesis testing and the 2-sample t-test -- 5.3.1.2 Summary of hypothesis testing steps and application to clustering -- 5.3.1.3 One-way ANOVA -- 5.3.1.4 χ2 test for independence -- 5.3.2 Cluster evaluation tools: multivariate analysis of features -- 5.4 Software tools and examples -- 5.4.1 Statistical software tools -- 5.4.1.1 Example: clustering autism spectrum disorder phenotypes -- 5.4.1.2 Correlation analysis -- 5.4.1.3 Cluster evaluation of individual features -- 5.4.1.4 Summary of results -- 5.5 Summary -- References -- 6 - Genomic data analysis -- 6.1 Introduction -- 6.2 DNA methylation -- 6.2.1 Introduction -- 6.2.2 DNA methylation technology -- 6.2.3 DNA methylation analysis
6.2.4 Clustering applications for DNA methylation data -- 6.3 SNP analysis -- 6.3.1 Association studies -- 6.3.2 Clustering with family-based association test (FBAT) analysis -- 6.3.2.1 Quality control filtering -- 6.3.2.2 Family-based association testing -- 6.3.2.3 Multiple testing -- 6.3.2.4 Adjustments for small sample size -- 6.3.2.5 Implementation and analysis of results -- 6.4 Biclustering for gene expression data analysis -- 6.4.1 Introduction to biclustering -- 6.4.2 Commonly used biclustering methods -- 6.4.3 Evolutionary-based biclustering methods -- 6.4.4 BARTMAP: a neural network-based biclustering algorithm -- 6.4.5 External and internal validation metrics related to biclustering -- 6.5 Summary -- References -- 7 - Evaluation of cluster validation metrics -- 7.1 Introduction -- 7.2 Related works -- 7.3 Background -- 7.3.1 Commonly used internal validation indices -- 7.3.2 External validation indices -- 7.3.3 Statistical methods -- 7.4 Evaluation framework -- 7.5 Experimental results and analysis -- 7.6 Ensemble validation paradigm -- 7.7 Summary -- References -- 8 - Data visualization -- 8.1 Introduction -- 8.2 Dimensionality reduction methods -- 8.2.1 Linear projection algorithms -- 8.2.1.1 Principal component analysis -- 8.2.1.2 Independent component analysis -- 8.2.2 Nonlinear projection algorithms -- 8.2.2.1 Isomap -- 8.2.2.2 T-Distributed Stochastic Neighbor Embedding (t-SNE) -- 8.2.2.3 LargeVis -- 8.2.2.4 Self-organizing maps -- 8.2.2.5 Visualization of commonly used biomedical data sets from the UCI machine learning repository () -- 8.3 Topological data analysis -- 8.4 Visualization for neural network architectures -- 8.5 Summary -- References -- 9 - Data analysis and machine learning tools in MATLAB and Python -- 9.1 Introduction -- 9.2 Importing data -- 9.2.1 Reading data in MATLAB -- 9.2.1.1 Interactive import function
Title Computational learning approaches to data analytics in biomedical applications
URI https://cir.nii.ac.jp/crid/1130848327501016064
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5983756
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780128144831
WOSCitedRecordID wos000552900100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZYQWg78VN0MGQhbpWhjmPHOa5hDDFRcZhQb5GdvIiMkqKlm7b_nhc7v-gOiAMXq3XaJPJn-X3v-fl7hLzlAYdQacus5Io1AlgMf2mY1kaiyQARgHbFJqLlUq9W8de2ZF3tyglEVaVvbuJf_xVq7EOwm6Oz_wB3f1PswM8IOrYIO7Y7jLj_2goNuAINXXBv3cU8OtVwr-XQZITOTKNE4vSZy2rmD-B70YDRbnY_E9bss7Hgd9vPviNtz_vArDUF_CzZ8YW5dUkB6P5vhqitxSXWO_6n5nY9LP9XVe3rT_m49Cx5Nw49BPOd0MOQwT_KFvGOqdugQ8_Pn4--s0z7iEGC5EMxl10qBNODRerzBBeLZlcYKdJqj-xFCp3r-8fJh9OzPoqGBK4hnE4rqX2iaGWV-jfoBJ24er_zxANyYOofaEzQ0GxrZBdVWd6xyY5onD8ik-bwyWNyD6on5OGXNvHhKVn-AS7twKUDuHS7oQ24tAeXlhUdwKVjcJ-Rbx9PzpNPrC2FwQxH9iCZApCmsEUWxdmc5wYgUtwivcukkKENZcSB6yjD68hYM5hDKPPAKHR3pTZBIZ6TSbWp4AWhEOZZkMe80KEIwxxsgQYPtOAQ5coEwZS8GY1Ker122_Z1OhpUwafkCAcrxTHAliMR0tjb1ApwkoUqnBLaDWPq_t_mGqcni0TGWkRSHf7lFi_J_jDpXpHJ9vIKjsiD7Hpb1pev25nwGzA8VUw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Computational+learning+approaches+to+data+analytics+in+biomedical+applications&rft.au=Al-Jabery%2C+Khalid&rft.au=Obafemi-Ajayi%2C+Tayo&rft.au=Olbricht%2C+Gayla&rft.au=Wunsch%2C+Donald+C.&rft.date=2020-01-01&rft.pub=Academic+Press&rft.isbn=9780128144824&rft_id=info:doi/10.1016%2FC2016-0-04633-8&rft.externalDocID=BB2964846X
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801281%2F9780128144831.jpg