Carbon Dioxide Emission Management in Power Generation

Provides an engaging and clearly structured source of information on the capture and storage of CO2 Designed to bridge the gap between the many disciplines involved in carbon dioxide emission management, this book provides a comprehensive yet easy-to-understand introduction to the subject of CO2 cap...

Full description

Saved in:
Bibliographic Details
Main Authors: Nord, Lars O, Bolland, Olav
Format: eBook
Language:English
Published: Newark John Wiley & Sons, Incorporated 2020
Wiley-VCH
Edition:1
Subjects:
ISBN:3527347534, 9783527347537
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • 4.8.2 Specific Heat Capacity -- 4.8.3 Ratio of Specific Heats -- 4.8.4 Thermal Conductivity -- 4.8.5 Viscosity -- 4.8.6 Solubility in Water -- Chapter 5 Power Plant Technologies -- 5.1 Coal‐Fired Power Plants -- 5.1.1 Steam Cycle in a Coal Power Plant -- 5.1.2 Pulverised Coal Combustion (PCC) -- 5.1.3 Circulating Fluidised Bed Combustion (CFBC) -- 5.1.4 Pressurised Fluidised Bed Combustion (PFBC) -- 5.1.5 Integrated Gasification Combined Cycle (IGCC) -- 5.1.5.1 Process Design -- 5.1.5.2 IGCC Availability -- 5.1.5.3 IGCC Efficiency -- 5.2 Gas Turbine Power Plants -- 5.2.1 Gas Turbines -- 5.2.2 Classification of Gas Turbines -- 5.2.3 Gas Turbines and Fuel Quality -- 5.2.4 Gas Turbine Performance Model -- 5.2.4.1 Compressor -- 5.2.4.2 Air Filter -- 5.2.4.3 Turbine -- 5.2.5 Part‐load Performance of a Gas Turbine in a Combined Cycle -- 5.2.6 Diluted Hydrogen as Gas Turbine Fuel -- 5.3 Combined Cycles -- 5.3.1 Combined Gas Turbine and Steam Turbine Cycles -- 5.3.2 Cycle Configurations -- 5.4 Heat Recovery Steam Generators -- 5.4.1 Introduction -- 5.4.2 Properties of Water/Steam -- 5.4.3 Dew Point of Flue Gas - Possible Corrosion -- 5.4.4 TQ Diagram for Steam Generation -- 5.5 Steam Cycle Cooling Systems -- 5.5.1 Direct Water Cooling of the Condenser (A) -- 5.5.2 Water Cooling with Wet Cooling Tower (B) -- 5.5.3 Air‐Cooled Condenser (C) -- 5.5.4 Water‐cooling with Dry Cooling Tower (D) -- 5.6 Internal Combustion Engines -- 5.7 Flue Gas Cleaning Technologies in Power Plants -- 5.7.1 Particle Removal from Flue Gas -- 5.7.2 Flue Gas Desulfurisation (FGD) -- 5.7.2.1 Wet Scrubbers -- 5.7.2.2 Spray Dry Scrubbers -- 5.7.2.3 Sorbent Injection Processes -- 5.7.2.4 Dry Scrubbers -- 5.7.2.5 Seawater Scrubbing -- 5.7.3 NOx Reduction -- 5.7.3.1 Dry Low NOx Burners -- 5.7.3.2 Fuel Staging -- 5.7.3.3 Reburning -- 5.7.3.4 Flue Gas Recirculation
  • 5.7.3.5 Water and Steam Injection -- 5.7.3.6 Selective Catalytic Reduction (SCR) -- 5.7.3.7 Selective Non‐catalytic Reduction (SNCR) -- 5.7.3.8 Mercury Control -- Chapter 6 Theory of Gas Separation -- 6.1 Gas Separation in CO2 Capture -- 6.2 Theory of Compression and Expansion -- 6.2.1 Closed Systems -- 6.2.2 Open Flow Systems -- 6.2.3 Isothermal Compression -- 6.2.4 Compression and Expansion with Irreversibilities -- 6.3 Theory of Separation -- 6.4 Minimum Work Requirement for Separation - Examples -- Chapter 7 Power Plant Efficiency Calculations -- 7.1 General Definition of Efficiency -- 7.2 Definition of the Term 'Efficiency' -- 7.3 Fuel Energy -- 7.4 Efficiency Calculations -- 7.5 Heat Rate Versus Efficiency -- 7.6 Additional Consumption of Fuel for CO2 Capture -- 7.7 Relating Work Requirement for CO2 Capture and Efficiency -- 7.8 Terms Related to CO2 Accounting -- Chapter 8 Classification of CO2 Capture Methods -- 8.1 Following the CO2 Path -- 8.2 Principles for Combining Power Plants and CO2 Capture -- 8.2.1 Post‐combustion CO2 Capture -- 8.2.2 Pre‐combustion CO2 Capture -- 8.2.3 Oxy‐combustion CO2 Capture -- 8.3 Dilution of CO2 -- Chapter 9 CO2 Capture by Gas Absorption -- 9.1 Theory of Absorption -- 9.2 Absorption Process -- 9.3 Solvents for Absorption -- 9.3.1 Chemical - Organic -- 9.3.2 Chemical - Inorganic -- 9.3.3 Physical Solvents -- 9.3.4 Ionic Liquids -- 9.4 Solvent Contaminants -- 9.5 Solvent Loading -- 9.6 Energy Use in Absorption Processes -- Chapter 10 CO2 Capture by Other Gas Separation Methods -- 10.1 Membranes -- 10.1.1 General Information About Membranes -- 10.1.2 Inorganic Membranes for H2, O2, and CO2 Separation -- 10.1.2.1 Dense Pd‐Based Membranes for Hydrogen Separation -- 10.1.2.2 Dense Electrolytes and Mixed Conducting Membranes -- 10.1.2.3 Microporous Membranes for Hydrogen or CO2 Separation
  • 13.2 Power Plant with Absorption of CO2 from the Flue Gas -- 13.3 Post‐combustion Efficiency Penalty - Absorption -- 13.4 Steam Turbine Steam Extraction -- 13.5 Flue Gas Pressure Drop -- 13.6 Post‐combustion CO2 Capture at Atmospheric Pressure with Flue Gas Recirculation (FGR) -- 13.7 Post‐combustion CO2 Capture at Elevated Pressure -- 13.7.1 High‐Pressure CO2 Absorption Cycle -- 13.7.2 Sargas Cycle -- 13.7.3 Combicap Cycle -- Chapter 14 Oxy‐combustion CO2 Capture in Power Cycles -- 14.1 Classification -- 14.2 Air Separation for Production of Oxygen -- 14.2.1 Methods and Applications -- 14.2.2 Air Separation by Cryogenic Distillation -- 14.2.3 Mixed Conducting Membrane -- 14.2.4 Chemical Looping Combustion (CLC) -- 14.3 Oxy‐combustion with Coal -- 14.3.1 Pulverised Coal Oxy‐combustion -- 14.3.2 Circulating Fluidised Bed Oxy‐combustion -- 14.4 Oxy‐combustion with Natural Gas -- 14.4.1 Water Cycle -- 14.4.2 S‐Graz Cycle -- 14.4.3 MATIANT Cycle -- 14.4.4 Allam Cycle -- 14.4.5 SCOC‐CC -- 14.4.6 AZEP - Advanced Zero Emission Power Plant -- 14.4.7 Solid Oxide Fuel Cell (SOFC) with CO2 Capture -- 14.4.8 Chemical Looping Combustion (CLC) with Natural Gas -- References -- Glossary -- Index -- EULA
  • 10.1.3 Polymeric Membranes for CO2 Separation -- 10.1.3.1 Dense Polymeric Membranes -- 10.1.3.2 Polymeric Membranes with Fixed‐site‐carrier (FSC) -- 10.1.3.3 Polymeric Membranes Supported Liquid Membrane (SLM) -- 10.1.4 Membrane Absorber -- 10.1.5 Flux Through Membranes -- 10.1.6 Challenges Facing Membrane Technology -- 10.2 Adsorption -- 10.2.1 General About Adsorption -- 10.2.2 Adsorbent Material -- 10.2.3 Adsorption-Desorption -- 10.3 Calcium Looping -- 10.4 Anti‐sublimation -- 10.5 Distillation -- 10.6 CO2 Hydrate Formation -- 10.7 Electrochemical Separation Processes -- Chapter 11 Removing Carbon from the Fuel - Pre‐combustion CO2 Capture -- 11.1 Principle -- 11.2 Hydrogenator and Desulfuriser -- 11.3 Pre‐reforming -- 11.4 Reformers -- 11.4.1 Steam Reforming (SR) -- 11.4.2 Partial Oxidation Reforming (POX) -- 11.4.3 Autothermal Reforming (ATR) -- 11.4.4 Combined Reforming -- 11.5 Gasification Theory and Principles -- 11.6 Gasifiers -- 11.6.1 Sasol-Lurgi Dry‐ash Gasifier -- 11.6.2 BGL Gasifier -- 11.6.3 High‐temperature Winkler (HTW) -- 11.6.4 General Electric Gasifier -- 11.6.5 Shell Gasifier -- 11.6.6 ConocoPhillips E‐Gas Gasifier -- 11.6.7 Siemens SFG Gasifier -- 11.6.8 Selection of Gasifiers -- 11.7 Syngas Quenching -- 11.8 Syngas Coolers -- 11.9 COS Hydrolysis -- 11.10 Water-Gas Shift (WGS) -- 11.11 Integrated Pre‐combustion Approaches -- 11.11.1 Membrane‐Enhanced Water-gas Shift -- 11.11.2 Sorption‐Enhanced Water‐gas Shift -- 11.11.3 Membrane‐Enhanced Reforming -- 11.11.4 Sorption‐Enhanced Reforming -- Chapter 12 Pre‐combustion CO2 Capture in Power Cycles -- 12.1 Classification -- 12.2 IGCC with CO2 Capture -- 12.2.1 Process Design -- 12.2.2 IGCC with CO2 Capture - Efficiency -- 12.3 IRCC - Integrated Reforming Combined Cycle -- Chapter 13 Post‐combustion CO2 Capture in Power Cycles -- 13.1 Classification
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- Nomenclature -- Organisation and Use of Book -- Chapter 1 Introduction -- 1.1 Greenhouse Effect -- 1.2 Atmospheric CO2 -- 1.3 Natural Accumulations and Emissions of CO2 -- 1.4 Man‐made Emissions of CO2 -- 1.5 Climate Change -- 1.6 Fossil Fuel Resources -- 1.7 Definition and Rationale of CO2 Capture and Storage (CCS) -- 1.8 Magnitude of CCS -- 1.9 Public Acceptance of CCS -- 1.10 Show‐stoppers for CCS Deployment? -- 1.11 History of CCS -- Chapter 2 Long‐Term Storage of CO2 -- 2.1 Storage Time and Volume -- 2.2 Underground Storage -- 2.2.1 Aquifer -- 2.2.2 Enhanced Oil Recovery (EOR) with CO2 -- 2.2.3 Enhanced Gas Recovery (EGR) -- 2.2.4 Enhanced Coal Bed Methane Recovery (ECBM) -- 2.3 Ocean Storage -- 2.4 Mineral Carbonation -- 2.5 Industrial Use - Products -- 2.6 Requirements for CO2 Purity and Transportation -- 2.7 CO2 Compression and Conditioning -- 2.8 Transportation Hazards of CO2 -- 2.9 Monitoring of CO2 Storage -- Chapter 3 Fuels -- 3.1 Coal -- 3.2 Liquid Fuels -- 3.2.1 Diesel -- 3.2.2 Methanol -- 3.2.3 Ethanol -- 3.2.4 Kerosene -- 3.2.5 Ammonia -- 3.3 Gaseous Fuels -- 3.4 Fuel Usage -- Chapter 4 CO2 Generation, Usage, and Properties -- 4.1 Short on CO2 -- 4.2 CO2 Chemistry and Energy Conversion -- 4.3 Combustion -- 4.4 Analogy Between CO2 Capture and Desulfurisation -- 4.5 Industrial Processes -- 4.5.1 Ammonia Production -- 4.5.2 Cement Production -- 4.5.3 Aluminium Production -- 4.6 How Do We Use CO2? -- 4.6.1 Chemicals and Petroleum -- 4.6.2 Metals -- 4.6.3 Manufacturing and Construction -- 4.6.4 Food and Beverages -- 4.6.5 Greenhouses -- 4.6.6 Health Care -- 4.6.7 Environmental -- 4.6.8 Electronics -- 4.6.9 Refrigerant -- 4.6.10 CO2 Laser -- 4.6.11 Miscellaneous -- 4.7 CO2 and Humans -- 4.8 Properties of CO2 -- 4.8.1 Density and Compressibility