An entropy measure for the complexity of multi-output Boolean functions
The complexity of a Boolean function can be expressed in terms of computational work. We present experimental data in support of the entropy definition of computational work based upon the input-output description of a Boolean function. Our data show a linear relationship between the computational w...
Uloženo v:
| Vydáno v: | Proceedings of the 27th ACM/IEEE Design Automation Conference s. 302 - 305 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
03.01.1991
|
| Edice: | ACM Conferences |
| Témata: | |
| ISBN: | 9780897913638, 0897913639 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The complexity of a Boolean function can be expressed in terms of computational work. We present experimental data in support of the entropy definition of computational work based upon the input-output description of a Boolean function. Our data show a linear relationship between the computational work and the average number of literals in a multi-level implementation. The investigation includes single-output and multi-output function with and without don't care states. The experiments, conducted on a large number of randomly generated functions, showed that the effect of don't cares is to reduce the computational work. For several finite state machine benchmarks, the computational work gave a good estimate of the size of the circuit. Finally, circuit delay is shown to have a non-linear relationship to the computational work. |
|---|---|
| Bibliografie: | SourceType-Conference Papers & Proceedings-1 ObjectType-Conference Paper-1 content type line 25 |
| ISBN: | 9780897913638 0897913639 |
| DOI: | 10.1145/123186.123282 |

