An entropy measure for the complexity of multi-output Boolean functions

The complexity of a Boolean function can be expressed in terms of computational work. We present experimental data in support of the entropy definition of computational work based upon the input-output description of a Boolean function. Our data show a linear relationship between the computational w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 27th ACM/IEEE Design Automation Conference s. 302 - 305
Hlavní autoři: Cheng, Kwang-Ting, Agrawal, Vishwani D.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 03.01.1991
Edice:ACM Conferences
Témata:
ISBN:9780897913638, 0897913639
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The complexity of a Boolean function can be expressed in terms of computational work. We present experimental data in support of the entropy definition of computational work based upon the input-output description of a Boolean function. Our data show a linear relationship between the computational work and the average number of literals in a multi-level implementation. The investigation includes single-output and multi-output function with and without don't care states. The experiments, conducted on a large number of randomly generated functions, showed that the effect of don't cares is to reduce the computational work. For several finite state machine benchmarks, the computational work gave a good estimate of the size of the circuit. Finally, circuit delay is shown to have a non-linear relationship to the computational work.
Bibliografie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:9780897913638
0897913639
DOI:10.1145/123186.123282