Linearly compressed pages: A low-complexity, low-latency main memory compression framework
Data compression is a promising approach for meeting the increasing memory capacity demands expected in future systems. Unfortunately, existing compression algorithms do not translate well when directly applied to main memory because they require the memory controller to perform non-trivial computat...
Uloženo v:
| Vydáno v: | MICRO 46 : proceedings of the 46th annual IEEE/ACM International Symposium on Microarchitecture : December 7-11th, 2013, University of California, Davis s. 172 - 184 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
ACM
01.12.2013
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Data compression is a promising approach for meeting the increasing memory capacity demands expected in future systems. Unfortunately, existing compression algorithms do not translate well when directly applied to main memory because they require the memory controller to perform non-trivial computation to locate a cache line within a compressed memory page, thereby increasing access latency and degrading system performance. Prior proposals for addressing this performance degradation problem are either costly or energy inefficient. By leveraging the key insight that all cache lines within a page should be compressed to the same size, this paper proposes a new approach to main memory compression - Linearly Compressed Pages (LCP) - that avoids the performance degradation problem without requiring costly or energy-inefficient hardware. We show that any compression algorithm can be adapted to fit the requirements of LCP, and we specifically adapt two previously-proposed compression algorithms to LCP: Frequent Pattern Compression and Base-Delta-Immediate Compression. Evaluations using benchmarks from SPEC CPU2006 and five server benchmarks show that our approach can significantly increase the effective memory capacity (by 69% on average). In addition to the capacity gains, we evaluate the benefit of transferring consecutive compressed cache lines between the memory controller and main memory. Our new mechanism considerably reduces the memory bandwidth requirements of most of the evaluated benchmarks (by 24% on average), and improves overall performance (by 6.1%/13.9%/10.7% for single-/two-/four-core workloads on average) compared to a baseline system that does not employ main memory compression. LCP also decreases energy consumed by the main memory subsystem (by 9.5% on average over the best prior mechanism). |
|---|---|
| AbstractList | Data compression is a promising approach for meeting the increasing memory capacity demands expected in future systems. Unfortunately, existing compression algorithms do not translate well when directly applied to main memory because they require the memory controller to perform non-trivial computation to locate a cache line within a compressed memory page, thereby increasing access latency and degrading system performance. Prior proposals for addressing this performance degradation problem are either costly or energy inefficient. By leveraging the key insight that all cache lines within a page should be compressed to the same size, this paper proposes a new approach to main memory compression - Linearly Compressed Pages (LCP) - that avoids the performance degradation problem without requiring costly or energy-inefficient hardware. We show that any compression algorithm can be adapted to fit the requirements of LCP, and we specifically adapt two previously-proposed compression algorithms to LCP: Frequent Pattern Compression and Base-Delta-Immediate Compression. Evaluations using benchmarks from SPEC CPU2006 and five server benchmarks show that our approach can significantly increase the effective memory capacity (by 69% on average). In addition to the capacity gains, we evaluate the benefit of transferring consecutive compressed cache lines between the memory controller and main memory. Our new mechanism considerably reduces the memory bandwidth requirements of most of the evaluated benchmarks (by 24% on average), and improves overall performance (by 6.1%/13.9%/10.7% for single-/two-/four-core workloads on average) compared to a baseline system that does not employ main memory compression. LCP also decreases energy consumed by the main memory subsystem (by 9.5% on average over the best prior mechanism). |
| Author | Yoonqu Kim Pekhimnko, Gennady Kozuch, Michael A. Mowry, Todd C. Hongyi Xin Seshadri, Vivek Mutlu, Onur Gibbons, Phillip B. |
| Author_xml | – sequence: 1 givenname: Gennady surname: Pekhimnko fullname: Pekhimnko, Gennady email: gpekhime@cs.cmu.edu organization: Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 2 givenname: Vivek surname: Seshadri fullname: Seshadri, Vivek email: vseshadr@cs.cmu.edu organization: Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 3 surname: Yoonqu Kim fullname: Yoonqu Kim email: yoongukim@cmu.edu organization: Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 4 surname: Hongyi Xin fullname: Hongyi Xin email: hxin@cs.cmu.edu organization: Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 5 givenname: Onur surname: Mutlu fullname: Mutlu, Onur email: onur@cmu.edu organization: Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 6 givenname: Phillip B. surname: Gibbons fullname: Gibbons, Phillip B. email: phillip.b.gibbons@intel.com organization: Intel Labs. Pittsburqh, Pittsburqh, PA, USA – sequence: 7 givenname: Michael A. surname: Kozuch fullname: Kozuch, Michael A. email: michael.a.kozuch@intel.com organization: Intel Labs. Pittsburqh, Pittsburqh, PA, USA – sequence: 8 givenname: Todd C. surname: Mowry fullname: Mowry, Todd C. email: tcm@cs.cmu.edu organization: Carnegie Mellon Univ., Pittsburgh, PA, USA |
| BookMark | eNpFjMtKxDAUhiMoqGPXLtzkAex40qRp4m4YvEHBjW7cDKeTU6k2TUkKY9_ecRRcffzXc3Y8hIEYuxSwFEKVN0WpoAKzPLBQRyyzldkHIAstjTplWUofACD2BWP1GXuru4Ew9jPfBj9GSokcH_Gd0i1f8T7s8h-_p69umq8PuseJhu3MPXYD9-RD_N92YeBtRE-7ED8v2EmLfaLsjwv2en_3sn7M6-eHp_WqzlHoYspJWOEQoWkdWiBFttLNVqOqnFVOIWiNWEqHjXEAKApntSnLVoM2aCTKBbv6_e2IaDPGzmOcN5VRlS6U_AZ6wVQa |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1145/2540708.2540724 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781450326384 1450326382 |
| EndPage | 184 |
| ExternalDocumentID | 7847624 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-a162t-e191daa0bfda90e4e976bc6a47d94d4a066aa53dab8d00a12d96855f6068a83a3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 04:38:28 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a162t-e191daa0bfda90e4e976bc6a47d94d4a066aa53dab8d00a12d96855f6068a83a3 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_7847624 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-Dec. |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 2013-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | MICRO 46 : proceedings of the 46th annual IEEE/ACM International Symposium on Microarchitecture : December 7-11th, 2013, University of California, Davis |
| PublicationTitleAbbrev | MICRO |
| PublicationYear | 2013 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssj0001254896 |
| Score | 1.7730395 |
| Snippet | Data compression is a promising approach for meeting the increasing memory capacity demands expected in future systems. Unfortunately, existing compression... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 172 |
| SubjectTerms | Bandwidth Compression algorithms Data compression DRAM Encoding Memory Memory Bandwidth Memory Capacity Memory Controller Memory management Operating systems Random access memory |
| Title | Linearly compressed pages: A low-complexity, low-latency main memory compression framework |
| URI | https://ieeexplore.ieee.org/document/7847624 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS0MxEB7a4sFT1VbcycFj0768JS_xJmLxIKUHleKlzMsChS7SxeXfm6Svy8GLpywQAhmSfJN88w3Arf-7kjFTVNkIaYoZp4iKUSUzaRVGOQZRn7fnvNcTg4HsV6C1jYUxxgTymWn7avjL1zO18k9lndwdpTxOq1DNc76O1dp7T3HYW_JSvYelWSf22nKRaIfSR7TvpU8Jt0e3_r95j6C5C8Mj_e0FcwwVMz2B-iYPAym3ZQPenUNpvFAx8QTxoAauiT8oFnfknoxnXzQQx823Q9yt0B6jh8o_ZIKjKZl4su1urDMUsRvKVhNeu48vD0-0zJlAkfF4SY3zvzRiVFiNMjKpcXCjUBzTXMtUp-gQBmKWaCyEjiJksZZcZJl1foxAkWByCrXpbGrOgCSW2YQrLKQ03muRlgulNTKrlDCMn0PDL9XwYy2LMSxX6eLv7ks4jH0micAEuYLacr4y13CgPpejxfwm2PIXTdyjQQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFG4QTfSECsbdHjwy0M50OlNvxkgwIuGAhnghjy4JCQyGxeXf25ZhOXjx1CVpmvSl7ffa730PoVv3dyVCKgNpCAQMYh4ASBpIEQsjgSTgRX3eWkm7nfZ6olNA1XUsjNbak890zVX9X76ayIV7Kqsn9ijlIdtBuzFjIVlGa229qFj0LXiu30NZXA-duhxJa750Me1bCVT8_dEo_W_mQ1TZBOLhzvqKOUIFnR2j0ioTA843Zhm9W5dSO6li7CjiXg9cYXdUzO7wPR5NvgJPHdffFnNXfXsEDiz_4DEMMzx2dNvNWGsqbFakrQp6bTx2H5pBnjUhAMrDeaCtB6YAyMAoEEQzbQHHQHJgiRJMMbAYAyCOFAxSRQjQUAmexrGxnkwKaQTRCSpmk0yfIhwZaiIuYSCEdn6LMDyVSgE1Uqaa8jNUdkvV_1gKY_TzVTr_u_sG7Te7L61-66n9fIEOQpdXwvNCLlFxPl3oK7QnP-fD2fTa2_UX9zymiA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=MICRO+46+%3A+proceedings+of+the+46th+annual+IEEE%2FACM+International+Symposium+on+Microarchitecture+%3A+December+7-11th%2C+2013%2C+University+of+California%2C+Davis&rft.atitle=Linearly+compressed+pages%3A+A+low-complexity%2C+low-latency+main+memory+compression+framework&rft.au=Pekhimnko%2C+Gennady&rft.au=Seshadri%2C+Vivek&rft.au=Yoonqu+Kim&rft.au=Hongyi+Xin&rft.date=2013-12-01&rft.pub=ACM&rft.spage=172&rft.epage=184&rft_id=info:doi/10.1145%2F2540708.2540724&rft.externalDocID=7847624 |