Software traceability with topic modeling

Software traceability is a fundamentally important task in software engineering. The need for automated traceability increases as projects become more complex and as the number of artifacts increases. We propose an automated technique that combines traceability with a machine learning technique know...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 ACM/IEEE 32nd International Conference on Software Engineering Ročník 1; s. 95 - 104
Hlavní autoři: Asuncion, Hazeline U., Asuncion, Arthur U., Taylor, Richard N.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 01.05.2010
IEEE
Edice:ACM Conferences
Témata:
ISBN:9781605587196, 1605587192
ISSN:0270-5257
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Software traceability is a fundamentally important task in software engineering. The need for automated traceability increases as projects become more complex and as the number of artifacts increases. We propose an automated technique that combines traceability with a machine learning technique known as topic modeling. Our approach automatically records traceability links during the software development process and learns a probabilistic topic model over artifacts. The learned model allows for the semantic categorization of artifacts and the topical visualization of the software system. To test our approach, we have implemented several tools: an artifact search tool combining keyword-based search and topic modeling, a recording tool that performs prospective traceability, and a visualization tool that allows one to navigate the software architecture and view semantic topics associated with relevant artifacts and architectural components. We apply our approach to several data sets and discuss how topic modeling enhances software traceability, and vice versa.
ISBN:9781605587196
1605587192
ISSN:0270-5257
DOI:10.1145/1806799.1806817