An Evolutionary Framework for Analyzing the Distance Preserving Property of Weighted Graphs

A subgraph H of a given graph G is isometric if the distances between every pair of vertices in H are the same as the distances of those vertices in G. We say a graph G is distance preserving if there exists an isometric subgraph of every possible order up to the order of G. Distance preserving prop...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) s. 577 - 584
Hlavní autori: Zahedi, Emad, Mirmomeni, Masoud, Esfahanian, Abdol-Hossein
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 31.07.2017
Edícia:ACM Conferences
Predmet:
ISBN:1450349935, 9781450349932
ISSN:2473-991X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A subgraph H of a given graph G is isometric if the distances between every pair of vertices in H are the same as the distances of those vertices in G. We say a graph G is distance preserving if there exists an isometric subgraph of every possible order up to the order of G. Distance preserving property has been applied to many real world problems such as route recommendation systems and all kinds of shortest-path-related applications. Here, we propose a biologically-inspired search algorithm to address the problem of finding isometric subgraphs that consequently determines if a given graph is distance preserving. In this algorithm, using a well defined fitness function, selection operator selects almost isometric subgraphs to generate the offspring for the next generation. There is a trade-off between the population size and searching speed. On one hand, the larger the population size is, the slower the search algorithm would be. On the other hand, by increasing the population size, we increase the likelihood of finding an existing isometric subgraph. Experimental results depict the performance of the proposed algorithm in finding isometric subgraphs even for challenging problems, and interestingly by these results one can see that "almost" all graphs are distance preserving. In closing, we show the smallest distance preserving graph whose product factors are not distance preserving. This graph has 80 vertices, and can be used as benchmark for algorithms in this concept.
AbstractList A subgraph H of a given graph G is isometric if the distances between every pair of vertices in H are the same as the distances of those vertices in G. We say a graph G is distance preserving if there exists an isometric subgraph of every possible order up to the order of G. Distance preserving property has been applied to many real world problems such as route recommendation systems and all kinds of shortest-path-related applications. Here, we propose a biologically-inspired search algorithm to address the problem of finding isometric subgraphs that consequently determines if a given graph is distance preserving. In this algorithm, using a well defined fitness function, selection operator selects almost isometric subgraphs to generate the offspring for the next generation. There is a trade-off between the population size and searching speed. On one hand, the larger the population size is, the slower the search algorithm would be. On the other hand, by increasing the population size, we increase the likelihood of finding an existing isometric subgraph. Experimental results depict the performance of the proposed algorithm in finding isometric subgraphs even for challenging problems, and interestingly by these results one can see that "almost" all graphs are distance preserving. In closing, we show the smallest distance preserving graph whose product factors are not distance preserving. This graph has 80 vertices, and can be used as benchmark for algorithms in this concept.
Author Mirmomeni, Masoud
Zahedi, Emad
Esfahanian, Abdol-Hossein
Author_xml – sequence: 1
  givenname: Emad
  surname: Zahedi
  fullname: Zahedi, Emad
  email: Zahediem@msu.edu
  organization: Department of Mathematics, Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, U.S.A
– sequence: 2
  givenname: Masoud
  surname: Mirmomeni
  fullname: Mirmomeni, Masoud
  email: Mirmomen@msu.edu
  organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, U.S.A
– sequence: 3
  givenname: Abdol-Hossein
  surname: Esfahanian
  fullname: Esfahanian, Abdol-Hossein
  email: Esfahanian@cse.msu.edu
  organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, U.S.A
BookMark eNqNUE1PAjEUrF-JgJw9eOnRy2LftmXbI1FAExI5aDTx0HThFVagJd0Vg7_e3cDBo8l7mWQmM8lMm5z74JGQa2A9ACHvOABjqezV2AednZB2zTIutObylLRSkfFEa3g_-ytckm5ZfrLaCKp-3iIfA0-Hu7D-qorgbdzTUbQb_A5xRV2IdODtev9T-AWtlkgfirKyfoZ0GrHEuGv4aQxbjNWeBkffsFgsK5zTcbTbZXlFLpxdl9g9Yoe8joYv94_J5Hn8dD-YJBb6aZVkUjFnnVJKAAppBeRizrRimZ05leZaNSyzqr45VwBcWq0ykWcMUqUd75CbQ26BiGYbi01dxGjW1yBFrfYOqp1tTB7CqjTATLOhOW5ojhuaPBbYxN3-08B_Ab1ebo0
ContentType Conference Proceeding
Copyright 2017 ACM
Copyright_xml – notice: 2017 ACM
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3110025.3116197
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Sociology & Social History
EISBN 1450349935
9781450349932
EISSN 2473-991X
Editor Diesner, Jana
Ferrari, Elena
Xu, Guandong
Editor_xml – sequence: 1
  givenname: Jana
  surname: Diesner
  fullname: Diesner, Jana
– sequence: 2
  givenname: Elena
  surname: Ferrari
  fullname: Ferrari, Elena
– sequence: 3
  givenname: Guandong
  surname: Xu
  fullname: Xu, Guandong
EndPage 584
ExternalDocumentID 9069154
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
LHSKQ
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a162t-7580faf88841e45a41b4d09807acf82b98e45a0a80a8d381135a9874b701289f3
IEDL.DBID RIE
ISBN 1450349935
9781450349932
IngestDate Tue Nov 04 05:04:44 EST 2025
Thu Jul 10 05:53:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords selection operator
Distance preserving
mutation rate
evolutionary algorithm
isometric subgraphs
population size
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel DirectLink
MeetingName ASONAM '17: Advances in Social Networks Analysis and Mining 2017
MergedId FETCHMERGED-LOGICAL-a162t-7580faf88841e45a41b4d09807acf82b98e45a0a80a8d381135a9874b701289f3
PageCount 8
ParticipantIDs ieee_primary_9069154
acm_books_10_1145_3110025_3116197_brief
acm_books_10_1145_3110025_3116197
PublicationCentury 2000
PublicationDate 20170731
2017-July
PublicationDateYYYYMMDD 2017-07-31
2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 20170731
  day: 31
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
PublicationTitleAbbrev ASONAM
PublicationYear 2017
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002180213
ssj0001615928
Score 1.6541867
Snippet A subgraph H of a given graph G is isometric if the distances between every pair of vertices in H are the same as the distances of those vertices in G. We say...
SourceID ieee
acm
SourceType Publisher
StartPage 577
SubjectTerms Computing methodologies
Computing methodologies -- Artificial intelligence
Computing methodologies -- Artificial intelligence -- Search methodologies
Computing methodologies -- Artificial intelligence -- Search methodologies -- Discrete space search
Computing methodologies -- Artificial intelligence -- Search methodologies -- Game tree search
Computing methodologies -- Artificial intelligence -- Search methodologies -- Heuristic function construction
Computing methodologies -- Machine learning
Computing methodologies -- Machine learning -- Machine learning approaches
Computing methodologies -- Machine learning -- Machine learning approaches -- Bio-inspired approaches
Computing methodologies -- Machine learning -- Machine learning approaches -- Bio-inspired approaches -- Genetic algorithms
Distance preserving
evolutionary algorithm
isometric subgraphs
Mathematics of computing
Mathematics of computing -- Discrete mathematics
Mathematics of computing -- Discrete mathematics -- Graph theory
Mathematics of computing -- Discrete mathematics -- Graph theory -- Graph algorithms
mutation rate
population size
selection operator
Theory of computation
Title An Evolutionary Framework for Analyzing the Distance Preserving Property of Weighted Graphs
URI https://ieeexplore.ieee.org/document/9069154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4cGTv3HzBxFEL9albdL2HUU3PckOioKHkqYp7GAnXSfMv968tG4Iggg9tCG0oS_t995Lvu8BnGFof_oJCi-XOadlRu5lGpGoT9xkSikeaVdsIn54SF5ecNyByyUXxhjjNp-ZKzp1a_n5VM8pVTZAHqGF_DVYi-Oo4Wqt8ikWmrF1pek6IGkzP2zVfHwhByGpowXSRqm2Lzo40m8_iqo4TBlt_m80W7C3Iuex8RJ2tqFjyh3Y_K7OwNqPdQf6Sy4KO2cNC5c1oiCLXXi9Ltnwo512qlqw0fcmLWa9WOakSj7t7Zn1D9kt-ZjNYw0lcal9TEn8ql6wacGeXXrV5OyO1K9ne_A0Gj7e3HttnQVP-VFQezZk4IUqbCwsfCOkEn4mco4Jj5UukiDDhFq5SuyRW4T3Q6kwiUUWE7phEe5Dt5yW5gCYCrEwUmMmUAtpQz9p4y-FWahi1DoWPTi1Lz2lAGKWNpxombaGSVvD9ODizz5pVk1M0YNdMkv63ghzpK1F-r83H8JGQJjs9toeQbeu5uYY1vVHPZlVJ242fQE3MsPE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED78Bfo0dRPnzwiiL9albbr2HkU3FefYg-LAh5KmKezBTbo5mH-9ubRuCIIIfWhDaEMv7Xd3yfcdwCn65qcfoXDSIOW0zMidRCES9YnrRErJm8oWmwi73ajfx94SXMy5MFpru_lMX9KpXctPR-qDUmUN5E00kL8Mq4EQHi_YWouMigFnLJ1puvZI3Mz1Sz0fVwQNn_TRvMDEqaYvWkBSbz_KqlhUaVf-N55NqC3oeaw3B54tWNLDbah812dg5ee6DXtzNgo7YwUPlxWyILMqvF4NWWtaTjyZz1j7e5sWM34ss2Iln-b2zHiI7Ia8zOKxmtK41N6jNH4-mbFRxl5sglWn7Jb0r8c1eG63nq7vnLLSgiPdpjdxTNDAM5mZaFi4WgRSuIlIOUY8lCqLvAQjauUyMkdqMN71A4lRKJKQ8A0zfwdWhqOh3gUmfcx0oDARqIQxE-mnNSUmvgxRqVDU4cS89JhCiHFcsKKDuDRMXBqmDud_9omTfKCzOlTJLPF7Ic0RlxbZ-735GNbvnh47cee--7APGx4htN15ewArk_xDH8Kamk4G4_zIzqwvlIzHCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining+%28ASONAM%29&rft.atitle=An+Evolutionary+Framework+for+Analyzing+the+Distance+Preserving+Property+of+Weighted+Graphs&rft.au=Zahedi%2C+Emad&rft.au=Mirmomeni%2C+Masoud&rft.au=Esfahanian%2C+Abdol-Hossein&rft.date=2017-07-01&rft.pub=ACM&rft.eissn=2473-991X&rft.spage=577&rft.epage=584&rft_id=info:doi/10.1145%2F3110025.3116197&rft.externalDocID=9069154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/sc.gif&client=summon&freeimage=true