Toward the next generation of recruitment tools: An online social network-based job recommender system

This paper presents a content-based recommender system which proposes jobs to Facebook and LinkedIn users. A variant of this recommender system is currently used by Work4, a San Francisco-based software company that offers Facebook recruitment solutions. Work4 is the world leader in social recruitme...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining : ASONAM 2013 : Niagara Falls, Canada, August 25-28, 2013 s. 821 - 828
Hlavní autoři: Diaby, Mamadou, Viennet, Emmanuel, Launay, Tristan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM and IEEE 01.08.2013
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a content-based recommender system which proposes jobs to Facebook and LinkedIn users. A variant of this recommender system is currently used by Work4, a San Francisco-based software company that offers Facebook recruitment solutions. Work4 is the world leader in social recruitment technology; to use its applications, Facebook or LinkedIn users explicitly grant access to some parts of their data, and they are presented with the jobs whose descriptions are matching their profiles the most. The profile of a user contains two types of data: interactions data (user's own data) and social connections data (user's friends data). Furthermore the users profiles and the description of jobs are divided into several parts called fields. Our experiments suggest that to predict the users interests for jobs, using basic similarity measures together with their interactions data collected by Work4 can be improved upon. The second part of this study presents a method to estimate the importance of each field of users and jobs in the task of job recommendation. Finally, the third part is devoted to the use of a machine learning algorithm in order to improve the results obtained with similarity measures: we trained a linear SVM (Support Vector Machines). Our results show that using this supervised learning procedure increases the performance of our content-based recommender system.
AbstractList This paper presents a content-based recommender system which proposes jobs to Facebook and LinkedIn users. A variant of this recommender system is currently used by Work4, a San Francisco-based software company that offers Facebook recruitment solutions. Work4 is the world leader in social recruitment technology; to use its applications, Facebook or LinkedIn users explicitly grant access to some parts of their data, and they are presented with the jobs whose descriptions are matching their profiles the most. The profile of a user contains two types of data: interactions data (user's own data) and social connections data (user's friends data). Furthermore the users profiles and the description of jobs are divided into several parts called fields. Our experiments suggest that to predict the users interests for jobs, using basic similarity measures together with their interactions data collected by Work4 can be improved upon. The second part of this study presents a method to estimate the importance of each field of users and jobs in the task of job recommendation. Finally, the third part is devoted to the use of a machine learning algorithm in order to improve the results obtained with similarity measures: we trained a linear SVM (Support Vector Machines). Our results show that using this supervised learning procedure increases the performance of our content-based recommender system.
Author Viennet, Emmanuel
Diaby, Mamadou
Launay, Tristan
Author_xml – sequence: 1
  givenname: Mamadou
  surname: Diaby
  fullname: Diaby, Mamadou
  email: mamadou.diaby@univ-paris13.fr
  organization: L2TI, Univ. Paris 13, Villetaneuse, France
– sequence: 2
  givenname: Emmanuel
  surname: Viennet
  fullname: Viennet, Emmanuel
  email: emmanuel.viennet@univ-paris13.fr
  organization: L2TI, Univ. Paris 13, Villetaneuse, France
– sequence: 3
  givenname: Tristan
  surname: Launay
  fullname: Launay, Tristan
  email: tlaunay@work4labs.com
  organization: Work4, Paris, France
BookMark eNotjLFOwzAURY0EErR0ZmDxD6T4OX52wlZVUJAqsZS5cuIXSElsZBuV_j1BMF3pHJ07Y-c-eGLsBsQSQOGdVLVEMEuJQkitz9hsoqKUUon6ki1SOgghQKJSFV6xbheONjqe34l7-s78jTxFm_vgeeh4pDZ-9Xkkn3kOYUj3fDUJP_SeeAptb4cpy8cQP4rGJnL8EJrfKoxT4yjydEqZxmt20dkh0eJ_5-z18WG3fiq2L5vn9WpbWNAyFyg6A7KrrNUlOLDaIZlKOSlRtlgjQtmB7ioApAaxgXpSzlDTqkrrxpVzdvv32xPR_jP2o42nvTYVmtqUP-PfVtQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/2492517.2500266
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sociology & Social History
EISBN 1450322409
9781450322409
EndPage 828
ExternalDocumentID 6785797
Genre orig-research
GroupedDBID 6IE
6IK
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a162t-50f712f8aa631d1a6d5e784d2252c595513f16f8115eb55b19d22d7ebc4866bd3
IEDL.DBID RIE
IngestDate Wed Aug 27 04:28:28 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a162t-50f712f8aa631d1a6d5e784d2252c595513f16f8115eb55b19d22d7ebc4866bd3
PageCount 8
ParticipantIDs ieee_primary_6785797
PublicationCentury 2000
PublicationDate 2013-Aug.
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-Aug.
PublicationDecade 2010
PublicationTitle Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining : ASONAM 2013 : Niagara Falls, Canada, August 25-28, 2013
PublicationTitleAbbrev ASONAM
PublicationYear 2013
Publisher ACM and IEEE
Publisher_xml – name: ACM and IEEE
SSID ssj0001254485
Score 1.8180424
Snippet This paper presents a content-based recommender system which proposes jobs to Facebook and LinkedIn users. A variant of this recommender system is currently...
SourceID ieee
SourceType Publisher
StartPage 821
SubjectTerms Collaboration
Content-based Recommender System
Facebook
History
LinkedIn
Recommender systems
Social Networks
Social Recruiting
Support Vector Machines
Vectors
Title Toward the next generation of recruitment tools: An online social network-based job recommender system
URI https://ieeexplore.ieee.org/document/6785797
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6tePDkoxWtD3IQT6bdvLPeRCwepPRQobeSbBKp2F1pt4L_3iRbqoIXb2FDWJiQmcxkvu8D4Crz1BrGKBI5zxCjJEeGc4ekl4QW3NJMJ3b9Jzkaqek0H7fAzRYL45xLzWeuH4fpLd9WxTqWygbBsXKZyzZoSykarNaPegoPmQbfsPdgxgeRC49j2Q9BPiQa4pd8Sooew_3__fcAdL9heHC8DTCHoOXKI9DbQkzgNWzAtbDh-vjsAD9JXbAw3OpgGdwufEms0tH4sPIweLflep76ymFdVW-rW3gXJhJZBmyq52FZ6gtHMbxZ-FqZuKpaLJLkHGyIn7vgefgwuX9EGyUFpLEgNeKZl5h4pbWg2GItLHdSMRsOMyl4HkVePBZeheuhC1tlcB6mrHSmYEoIY-kx2Cmr0p0AmOWKOl4Qr71gRcg2tDGSKC28ZVJgdQo60YCz94YsY7axXe_vz2dgjyR9idhRdw526uXaXYDd4qOer5aXaYe_AKyRqPE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA9zCnrysYnOVw7iyW7NO_Um4pg4xw4Tdhtpk8jEtbJ1gv-9STqmghdvJSEUvtDvS77-HgBcxpbolFIS8YTFESU4iVLGTCSswCRjmsQqqOv3xWAgx-NkWAPXay6MMSaAz0zbP4Z_-brIlr5V1nGJlYlEbIBNRimOK7bWj46KG5Vspd-DKOt4NTyGRNuVeXfV4L8MVEL96O7-7817oPlNxIPDdYnZBzWTH4DWmmQCr2BFr4WV2sdnA9hRwMFCd66DuUu88CXoSvvww8JCl9_my2lAlsOyKN4WN_DWTQS5DFj1z92ygAyPfIHT8LVI_apiNgumc7CSfm6C5-796K4XrbwUIoU4LiMWW4GwlUpxgjRSXDMjJNXuc8YZS7zNi0XcSndANG6zUpS4KS1MmlHJearJIajnRW6OAIwTSQzLsFWW08zdN1SaCiwVt5oKjuQxaPgATt4ruYzJKnatv4cvwHZv9NSf9B8GjydgBwe3CY-vOwX1cr40Z2Ar-yini_l52O0voKysOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2013+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining+%3A+ASONAM+2013+%3A+Niagara+Falls%2C+Canada%2C+August+25-28%2C+2013&rft.atitle=Toward+the+next+generation+of+recruitment+tools%3A+An+online+social+network-based+job+recommender+system&rft.au=Diaby%2C+Mamadou&rft.au=Viennet%2C+Emmanuel&rft.au=Launay%2C+Tristan&rft.date=2013-08-01&rft.pub=ACM+and+IEEE&rft.spage=821&rft.epage=828&rft_id=info:doi/10.1145%2F2492517.2500266&rft.externalDocID=6785797