Bees Swarm Optimization Based Approach for Web Information Retrieval

This paper deals with large scale information retrieval aiming at contributing to web searching. The collections of documents considered are huge and not obvious to tackle with classical approaches. The greater the number of documents belonging to the collection, the more powerful approach required....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Jg. 1; S. 6 - 13
Hauptverfasser: Drias, Habiba, Mosteghanemi, Hadia
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2010
Schlagworte:
ISBN:9781424484829, 1424484820
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper deals with large scale information retrieval aiming at contributing to web searching. The collections of documents considered are huge and not obvious to tackle with classical approaches. The greater the number of documents belonging to the collection, the more powerful approach required. A Bees Swarm Optimization algorithm called BSO-IR is designed to explore the prohibitive number of documents to find the information needed by the user. Extensive experiments were performed on CACM and RCV1 collections and more large corpuses in order to show the benefit gained from using such approach instead of the classic one. Performances in terms of solutions quality and runtime are compared between BSO and exact algorithms. Numerical results exhibit the superiority of BSO-IR on previous works in terms of scalability while yielding comparable quality.
AbstractList This paper deals with large scale information retrieval aiming at contributing to web searching. The collections of documents considered are huge and not obvious to tackle with classical approaches. The greater the number of documents belonging to the collection, the more powerful approach required. A Bees Swarm Optimization algorithm called BSO-IR is designed to explore the prohibitive number of documents to find the information needed by the user. Extensive experiments were performed on CACM and RCV1 collections and more large corpuses in order to show the benefit gained from using such approach instead of the classic one. Performances in terms of solutions quality and runtime are compared between BSO and exact algorithms. Numerical results exhibit the superiority of BSO-IR on previous works in terms of scalability while yielding comparable quality.
Author Drias, Habiba
Mosteghanemi, Hadia
Author_xml – sequence: 1
  givenname: Habiba
  surname: Drias
  fullname: Drias, Habiba
  email: hdrias@usthb.dz
  organization: Dept. of Comput. Sci., USTHB, Algiers, Algeria
– sequence: 2
  givenname: Hadia
  surname: Mosteghanemi
  fullname: Mosteghanemi, Hadia
  organization: Dept. of Comput. Sci., USTHB, Algiers, Algeria
BookMark eNotjE9Lw0AUxFdUUGvOHrzsF0jd97K72T22tWqgUNBKj-UlecGV5g9JUPTTW62HYeY3DHMlzpq2YSFuQE0BlL_bZnE220xR_RapPxGRT51KrTcaPOjTPwaNWjvt0F-IaBjelVIAqLRxl-J-zjzIl0_qa7nuxlCHbxpD28g5DVzKWdf1LRVvsmp7ueVcZs0h1cfJM4994A_aX4vzivYDR_8-Ea8Py83iKV6tH7PFbBUTWBxjtLpKCvbWOzJQVtoe5EEVeZI4qDg1JvWuLEpXIFHpEDEvsCLAPLdMPpmI2-NvYOZd14ea-q-dsWAhVckPQPxOKQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2010.179
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769541914
0769541917
EndPage 13
ExternalDocumentID 5616170
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a162t-264f3ce9698a51df46df4910cb3381fe755798dcd8c2aad8222bc2fa12bb6ea93
IEDL.DBID RIE
ISBN 9781424484829
1424484820
IngestDate Wed Sep 03 07:11:07 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a162t-264f3ce9698a51df46df4910cb3381fe755798dcd8c2aad8222bc2fa12bb6ea93
PageCount 8
ParticipantIDs ieee_primary_5616170
PublicationCentury 2000
PublicationDate 2010-Aug.
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-Aug.
PublicationDecade 2010
PublicationTitle 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
PublicationTitleAbbrev wi-iat
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001120458
ssj0000452489
Score 1.5592605
Snippet This paper deals with large scale information retrieval aiming at contributing to web searching. The collections of documents considered are huge and not...
SourceID ieee
SourceType Publisher
StartPage 6
SubjectTerms BSO
classic approach
Complexity theory
evolutionary algorithms
Heuristic algorithms
Humanities
Indexing
Information retrieval
Metaheuristics
Particle swarm optimization
Scalability
swarm intelligence
Time factors
Vectors
very large collections of documents
web information retrieval
Title Bees Swarm Optimization Based Approach for Web Information Retrieval
URI https://ieeexplore.ieee.org/document/5616170
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQNTgRbxLQ-MhNapY8djC1RUQqWCQrtVtnORGPqhfsDfx3bcdmFhiOREGSw78Tuf33sHcKsM09xJt4Td_0Qsl3mUJigjZbzChyPzJJrPF9Hvp-OxHJTgbqeFQURPPsN71_Rn-dncbFyqrGGx3vmHl6EshCi0Wrt8irMGZ8E53edXqDNaT7darpRZqNtaPIV7Gax-aFM2Rr2o1x4WVC_qeV37WisearrV_3XyCOp7zR4Z7NDoGEo4O4HqtmgDCf9wDR47iCvy_qOWU_Jq14tpEGKSjsWzjLSDxzixwSwZoSZBr-RfefPlt-y3WYeP7tPw4TkKpRQiRXm8djy2vGVQcpmqhGY54_aykYLRdopojiJJhEwzZxQQK5W5qEGbOFc01pqjkq1TqMzmMzwD0lSaJjlnWYwxa3G7GbeLhHMdlIaxJupzqLlBmSwKt4xJGI-Lvx9fwmFxHu8odVdQWS83eA0H5nv9tVre-Cn-BcjvoPo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNETKhh_24NHJ3R03XoElUBEJIrijbTdW-IBMPzQf9-2K3Dx4mFJt-zQtFu_19fv-x7AtdRMcSvdis3-J2CZyIIkQhFI7RQ-HJkj0bx3414v-fgQ_QLcrLUwiOjIZ3hrm-4sP53qpU2VVQ3WW__wLdiOGAtprtZaZ1SsOTjz3ukuw0Kt1XqyUnMlzIDdyuTJ3wtv9kNrojrsBJ3GICd7Ucfs2lRbcWDTKv2vm_tQ2aj2SH-NRwdQwMkhlFZlG4j_i8tw30Sck9cfORuTZ7NijL0UkzQNoqWk4V3GiQlnyRAV8Yol98qLK8Blvs4KvLUeBnftwBdTCCTl4cIy2bK6RsFFIiOaZoyby8QKWplJohnGURSLJLVWAaGUqY0blA4zSUOlOEpRP4LiZDrBYyA1qWiUcZaGGLI6N9txs0xY30GhGauhOoGyHZTRV-6XMfLjcfr34yvYbQ-euqNup_d4Bnv56bwl2J1DcTFb4gXs6O_F53x26ab7F14PpEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE%2FWIC%2FACM+International+Conference+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Bees+Swarm+Optimization+Based+Approach+for+Web+Information+Retrieval&rft.au=Drias%2C+Habiba&rft.au=Mosteghanemi%2C+Hadia&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424484829&rft.volume=1&rft.spage=6&rft.epage=13&rft_id=info:doi/10.1109%2FWI-IAT.2010.179&rft.externalDocID=5616170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/sc.gif&client=summon&freeimage=true