Bees Swarm Optimization Based Approach for Web Information Retrieval
This paper deals with large scale information retrieval aiming at contributing to web searching. The collections of documents considered are huge and not obvious to tackle with classical approaches. The greater the number of documents belonging to the collection, the more powerful approach required....
Uloženo v:
| Vydáno v: | 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Ročník 1; s. 6 - 13 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2010
|
| Témata: | |
| ISBN: | 9781424484829, 1424484820 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper deals with large scale information retrieval aiming at contributing to web searching. The collections of documents considered are huge and not obvious to tackle with classical approaches. The greater the number of documents belonging to the collection, the more powerful approach required. A Bees Swarm Optimization algorithm called BSO-IR is designed to explore the prohibitive number of documents to find the information needed by the user. Extensive experiments were performed on CACM and RCV1 collections and more large corpuses in order to show the benefit gained from using such approach instead of the classic one. Performances in terms of solutions quality and runtime are compared between BSO and exact algorithms. Numerical results exhibit the superiority of BSO-IR on previous works in terms of scalability while yielding comparable quality. |
|---|---|
| AbstractList | This paper deals with large scale information retrieval aiming at contributing to web searching. The collections of documents considered are huge and not obvious to tackle with classical approaches. The greater the number of documents belonging to the collection, the more powerful approach required. A Bees Swarm Optimization algorithm called BSO-IR is designed to explore the prohibitive number of documents to find the information needed by the user. Extensive experiments were performed on CACM and RCV1 collections and more large corpuses in order to show the benefit gained from using such approach instead of the classic one. Performances in terms of solutions quality and runtime are compared between BSO and exact algorithms. Numerical results exhibit the superiority of BSO-IR on previous works in terms of scalability while yielding comparable quality. |
| Author | Drias, Habiba Mosteghanemi, Hadia |
| Author_xml | – sequence: 1 givenname: Habiba surname: Drias fullname: Drias, Habiba email: hdrias@usthb.dz organization: Dept. of Comput. Sci., USTHB, Algiers, Algeria – sequence: 2 givenname: Hadia surname: Mosteghanemi fullname: Mosteghanemi, Hadia organization: Dept. of Comput. Sci., USTHB, Algiers, Algeria |
| BookMark | eNotjE9Lw0AUxFdUUGvOHrzsF0jd97K72T22tWqgUNBKj-UlecGV5g9JUPTTW62HYeY3DHMlzpq2YSFuQE0BlL_bZnE220xR_RapPxGRT51KrTcaPOjTPwaNWjvt0F-IaBjelVIAqLRxl-J-zjzIl0_qa7nuxlCHbxpD28g5DVzKWdf1LRVvsmp7ueVcZs0h1cfJM4994A_aX4vzivYDR_8-Ea8Py83iKV6tH7PFbBUTWBxjtLpKCvbWOzJQVtoe5EEVeZI4qDg1JvWuLEpXIFHpEDEvsCLAPLdMPpmI2-NvYOZd14ea-q-dsWAhVckPQPxOKQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WI-IAT.2010.179 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9780769541914 0769541917 |
| EndPage | 13 |
| ExternalDocumentID | 5616170 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-a162t-264f3ce9698a51df46df4910cb3381fe755798dcd8c2aad8222bc2fa12bb6ea93 |
| IEDL.DBID | RIE |
| ISBN | 9781424484829 1424484820 |
| IngestDate | Wed Sep 03 07:11:07 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a162t-264f3ce9698a51df46df4910cb3381fe755798dcd8c2aad8222bc2fa12bb6ea93 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_5616170 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Aug. |
| PublicationDateYYYYMMDD | 2010-08-01 |
| PublicationDate_xml | – month: 08 year: 2010 text: 2010-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology |
| PublicationTitleAbbrev | wi-iat |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001120458 ssj0000452489 |
| Score | 1.5592605 |
| Snippet | This paper deals with large scale information retrieval aiming at contributing to web searching. The collections of documents considered are huge and not... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 6 |
| SubjectTerms | BSO classic approach Complexity theory evolutionary algorithms Heuristic algorithms Humanities Indexing Information retrieval Metaheuristics Particle swarm optimization Scalability swarm intelligence Time factors Vectors very large collections of documents web information retrieval |
| Title | Bees Swarm Optimization Based Approach for Web Information Retrieval |
| URI | https://ieeexplore.ieee.org/document/5616170 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRbxlgdGQrHzsD22QEUlVCooarfKdi4SQx_qA_4-tuO2CwtDpCTKEJ0T3-fz930HcMvRwoY0k5G2WDVKeJxEInMkRxbndvYzSYLexPWV9_tiPJaDCtzttDCI6MlneO9O_V5-PjcbVypr2Vzv_MOrUOWcl1qtXT3FWYMnwTnd11eoM1oXWy2XSGyq21o8hWsZrH7og2yNelGvPSypXtTzuva9Vnyq6db_95JH0Nxr9shgl42OoYKzE6hvmzaQ8A834KmDuCIfP2o5JW92vpgGISbp2HyWk3bwGCcWzJIRahL0Sv6Rd99-y36bTfjsPg8fX6LQSiFSNGNrx2MrYoMyk0KlNC-SzB4WKRhtl6i0QJ6mXIrcGQUwpXKHGrRhhaJM6wyVjE-hNpvP8AyIdg44rGB27WwDbJRQgqks1orqVBouz6HhgjJZlG4ZkxCPi79vX8JhuR_vKHVXUFsvN3gNB-Z7_bVa3vgh_gX4QKA5 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNETKhh_24NHJ7bruvYIKoGISBQDN9J2XeIBMPzQf9-2K3jx4mHJtuywvG59X1-_73sA16mxsCFhIlIWq0Y0jWnEmSM5kjizs5-m1HgT127a6_HRSPRLcLPRwhhjPPnM3LpTv5efzfTKlcrqNtc7__At2E4oJbhQa20qKs4cnAbvdF9hwc5qna_VXJzaZLc2eQrXIpj94DtRH3aiTmNQkL2wZ3b9dlvxyaZV-d9r7kPtV7WH-pt8dAAlMz2EyrptAwp_cRUemsYs0Nu3nE_Qi50xJkGKiZo2o2WoEVzGkYWzaGgUCool_8irb8Blv84avLceB_ftKDRTiCRmZOmYbHmsjWCCywRnOWX2sFhBK7tIxblJkyQVPHNWAUTKzOEGpUkuMVGKGSniIyhPZ1NzDEg5DxySE7t6tgHWkktOJIuVxCoROhUnUHVBGX8WfhnjEI_Tv29fwW578Nwddzu9pzPYK3bnHcHuHMrL-cpcwI7-Wn4s5pd-uH8AgryjgA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE%2FWIC%2FACM+International+Conference+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Bees+Swarm+Optimization+Based+Approach+for+Web+Information+Retrieval&rft.au=Drias%2C+Habiba&rft.au=Mosteghanemi%2C+Hadia&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424484829&rft.volume=1&rft.spage=6&rft.epage=13&rft_id=info:doi/10.1109%2FWI-IAT.2010.179&rft.externalDocID=5616170 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/sc.gif&client=summon&freeimage=true |

