Rank Aggregation Based Text Feature Selection

Filtering feature selection method (filtering method, for short) is a well-known feature selection strategy in pattern recognition and data mining. Filtering method outperforms other feature selection methods in many cases when the dimension of features is large. There are so many filtering methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Volume 01 Jg. 1; S. 165 - 172
Hauptverfasser: Wu, Ou, Zuo, Haiqiang, Zhu, Mingliang, Hu, Weiming, Gao, Jun, Wang, Hanzi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: Washington, DC, USA IEEE Computer Society 15.09.2009
IEEE
Schriftenreihe:ACM Conferences
Schlagworte:
ISBN:0769538010, 9780769538013
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Filtering feature selection method (filtering method, for short) is a well-known feature selection strategy in pattern recognition and data mining. Filtering method outperforms other feature selection methods in many cases when the dimension of features is large. There are so many filtering methods proposed in previous work leading to the “selection trouble” that how to select an appropriate filtering method for a given text data set. Since to find the best filtering method is usually intractable in real application, this paper takes an alternative path. We propose a feature selection framework that fuses the results obtained by different filtering methods. In fact, deriving a better rank list from different rank lists, known as rank aggregation, is a hot topic studied in many disciplines. Based on the proposed framework and Markov chains rank aggregation techniques, in this paper, we present two new feature selection methods: FR-MC1 and FR-MC4. We also introduce a perturbation algorithm to alleviate the drawbacks of Markov chains rank aggregation techniques. Empirical evaluation on two public text data sets shows that the two new feature selection methods achieve better or comparable results than classical filtering methods, which also demonstrate the effectiveness of our framework.
AbstractList Filtering feature selection method (filtering method, for short) is a well-known feature selection strategy in pattern recognition and data mining. Filtering method outperforms other feature selection methods in many cases when the dimension of features is large. There are so many filtering methods proposed in previous work leading to the “selection trouble” that how to select an appropriate filtering method for a given text data set. Since to find the best filtering method is usually intractable in real application, this paper takes an alternative path. We propose a feature selection framework that fuses the results obtained by different filtering methods. In fact, deriving a better rank list from different rank lists, known as rank aggregation, is a hot topic studied in many disciplines. Based on the proposed framework and Markov chains rank aggregation techniques, in this paper, we present two new feature selection methods: FR-MC1 and FR-MC4. We also introduce a perturbation algorithm to alleviate the drawbacks of Markov chains rank aggregation techniques. Empirical evaluation on two public text data sets shows that the two new feature selection methods achieve better or comparable results than classical filtering methods, which also demonstrate the effectiveness of our framework.
Author Zhu, Mingliang
Hu, Weiming
Wu, Ou
Wang, Hanzi
Zuo, Haiqiang
Gao, Jun
Author_xml – sequence: 1
  givenname: Ou
  surname: Wu
  fullname: Wu, Ou
– sequence: 2
  givenname: Haiqiang
  surname: Zuo
  fullname: Zuo, Haiqiang
– sequence: 3
  givenname: Mingliang
  surname: Zhu
  fullname: Zhu, Mingliang
– sequence: 4
  givenname: Weiming
  surname: Hu
  fullname: Hu, Weiming
– sequence: 5
  givenname: Jun
  surname: Gao
  fullname: Gao, Jun
– sequence: 6
  givenname: Hanzi
  surname: Wang
  fullname: Wang, Hanzi
BookMark eNqNkL1OwzAURo0ACVq6srBkY0q513-xx1JRiFQJCYI6Wk58XYW2CUqCBG9PS3kApm84R99wRuysaRti7Bphigj2bpWn-ayYcgA7FfyETWxmUHIplRAoTtkIMm2VMIBwwSZ9_w4AiByk0pcsffHNJpmt1x2t_VC3TXLvewpJQV9DsiA_fHaUvNKWqgO8YufRb3ua_O2YvS0eivlTunx-zOezZepRw5BWoCPyrBTBBjQkgwEvDWoKmspQVVBKblEIHrSusr1tYihVUDFGq7LMijG7Of7WROQ-unrnu2-nuNHwS2-P1Fc7V7btpncI7tDCrXK3b-EOLZzgezP9n-nKrqYofgDlfl44
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2009.32
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781424453313
1424453313
EndPage 172
ExternalDocumentID 5286079
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IERZE
OCL
RIB
RIC
RIE
RIL
AAWTH
LHSKQ
ID FETCH-LOGICAL-a160t-c06f127b3d9d18e4d80a4816ed6ebdcc0b4291332d66c7c068fdb5d5fff957793
IEDL.DBID RIE
ISBN 0769538010
9780769538013
IngestDate Wed Aug 27 01:35:30 EDT 2025
Wed Jan 31 06:43:04 EST 2024
Wed Jan 31 06:46:29 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Rank aggregation
Text feature selection
Markov chains
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a160t-c06f127b3d9d18e4d80a4816ed6ebdcc0b4291332d66c7c068fdb5d5fff957793
PageCount 8
ParticipantIDs acm_books_10_1109_WI_IAT_2009_32
ieee_primary_5286079
acm_books_10_1109_WI_IAT_2009_32_brief
PublicationCentury 2000
PublicationDate 20090915
2009-Sept.
PublicationDateYYYYMMDD 2009-09-15
2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: 20090915
  day: 15
PublicationDecade 2000
PublicationPlace Washington, DC, USA
PublicationPlace_xml – name: Washington, DC, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Volume 01
PublicationTitleAbbrev WIIAT
PublicationYear 2009
Publisher IEEE Computer Society
IEEE
Publisher_xml – name: IEEE Computer Society
– name: IEEE
SSID ssj0001120456
Score 1.4764655
Snippet Filtering feature selection method (filtering method, for short) is a well-known feature selection strategy in pattern recognition and data mining. Filtering...
SourceID ieee
acm
SourceType Publisher
StartPage 165
SubjectTerms Applied computing -- Document management and text processing
Automation
Computer science
Computing methodologies -- Machine learning -- Machine learning algorithms -- Feature selection
Computing methodologies -- Modeling and simulation -- Model development and analysis
Computing methodologies -- Modeling and simulation -- Model development and analysis -- Model verification and validation
Computing methodologies -- Modeling and simulation -- Model development and analysis -- Modeling methodologies
Conferences
Content addressable storage
Data mining
Fuses
Information filtering
Information filters
Information systems -- Information retrieval -- Retrieval models and ranking
Information systems -- Information retrieval -- Retrieval tasks and goals
Intelligent agent
Markov chains
Mathematics of computing -- Probability and statistics -- Probabilistic representations -- Markov networks
Mathematics of computing -- Probability and statistics -- Stochastic processes -- Markov processes
Pattern recognition
Rank aggregation
Text feature selection
Theory of computation -- Theory and algorithms for application domains -- Machine learning theory -- Markov decision processes
Title Rank Aggregation Based Text Feature Selection
URI https://ieeexplore.ieee.org/document/5286079
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sFT1VasL3IQT65N9pFsjlUsFqQUrba3ZTePUsRW-vD3O9ndtgiCeNtHDsuXzM58mcx8AFcpOhFhmfZCi-EbhtTaS30deSnNrPUzwVSeaH97Ev1-PB7LQQVutrUwxpj88Jm5dZd5Ll_P1dptlbUjP-ZUyCpUheBFrdZuP4W5xuq8YOYSzRiJRtlgZ3MflE0bGZXtUc_rdYZFv0onPVJN1ccPgZXcv3Tr__uyA2juCvXIYOuCDqFiZkdQ3yg1kNJwG-A9p7N30pkguZ7kU0Hu0HtpMsRfM3FR4HphyEsuiYMvm_DafRjeP3qlUIKXMk5XnqLcIuRZoKVmsQl1TNMwZtxobjKtFM3Q6yAZ9TXnSuDo2Oos0pG1VkYCLfQYarP5zJwA4Tg9iKTVCFLo21AaX1DLA6uUYooFLSCIVOIYwDLJCQSVyaiXIJhO0VImgd-C67-GJNliamwLGg7J5LPoq5GUIJ7-_vgM9otMjjvfdQ611WJtLmBPfa2my8Vlvhi-ARVYrRI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VggSnsoqy-oA4EbCzOPGxIFArSlVBob1ZiZcKIQrqwvczTtJWSEiIWxYfomdPZp7HMw_gLEUnElumvdBi-IYhtfZSX0deSjNr_SxmKk-0v7TjTicZDES3AheLWhhjTH74zFy6yzyXrz_UzG2VXUV-wmksVmA1CkOfFtVayx0V5lqr84KbCzRkpBpli535fVC2bWRUXPVbXqvRKzpWOvGRlVS9_5BYyT3MXe1_37YJu8tSPdJdOKEtqJjRNtTmWg2kNN0d8B7T0RtpDJFeD_PJINfovzTp4c-ZuDhwNjbkKRfFwZe78Hx327tpeqVUgpcyTqeeotwi6FmghWaJCXVC0zBh3GhuMq0UzdDvIB31NecqxtGJ1VmkI2utiGK00T2ojj5GZh8IxwlCJK1GkELfhsL4MbU8sEopplhQB4JISccBJjKnEFTIfksimE7TUsjAr8P5X0NkNn41tg47Dkn5WXTWkCWIB78_PoX1Zu-hLdutzv0hbBR5HXfa6wiq0_HMHMOa-pq-TsYn-cL4Bku4sFk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2009+IEEE%2FWIC%2FACM+International+Joint+Conference+on+Web+Intelligence+and+Intelligent+Agent+Technology.+Volume+1&rft.atitle=Rank+Aggregation+Based+Text+Feature+Selection&rft.au=Wu%2C+Ou&rft.au=Zuo%2C+Haiqiang&rft.au=Zhu%2C+Mingliang&rft.au=Hu%2C+Weiming&rft.date=2009-09-01&rft.pub=IEEE&rft.isbn=9780769538013&rft.volume=1&rft.spage=165&rft.epage=172&rft_id=info:doi/10.1109%2FWI-IAT.2009.32&rft.externalDocID=5286079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769538013/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769538013/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780769538013/sc.gif&client=summon&freeimage=true