Reducing the Cold-Start Problem in Content Recommendation through Opinion Classification
Like search engines, recommender systems have become a tool that cannot be ignored by websites with a large selection of products, music, news or simply webpages links. The performance of this kind of system depends on a large amount of information. At the same time, the amount of information on the...
Saved in:
| Published in: | 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Vol. 1; pp. 204 - 207 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.08.2010
|
| Subjects: | |
| ISBN: | 9781424484829, 1424484820 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Like search engines, recommender systems have become a tool that cannot be ignored by websites with a large selection of products, music, news or simply webpages links. The performance of this kind of system depends on a large amount of information. At the same time, the amount of information on the Web is continuously growing, especially due to increased User Generated Content since the apparition of Web 2.0. In this paper, we propose a method that exploits blog textual data in order to supply a recommender system. The method we propose has two steps. First, subjective texts are labelled according to their expressed opinion in order to build a user-item-rating matrix. Second, this matrix is used to establish recommendations thanks to a collaborative filtering technique. |
|---|---|
| AbstractList | Like search engines, recommender systems have become a tool that cannot be ignored by websites with a large selection of products, music, news or simply webpages links. The performance of this kind of system depends on a large amount of information. At the same time, the amount of information on the Web is continuously growing, especially due to increased User Generated Content since the apparition of Web 2.0. In this paper, we propose a method that exploits blog textual data in order to supply a recommender system. The method we propose has two steps. First, subjective texts are labelled according to their expressed opinion in order to build a user-item-rating matrix. Second, this matrix is used to establish recommendations thanks to a collaborative filtering technique. |
| Author | Poirier, Damien Fessant, Francoise Tellier, Isabelle |
| Author_xml | – sequence: 1 givenname: Damien surname: Poirier fullname: Poirier, Damien email: damien.poirier@orange-ftgroup.com organization: Orange Labs., Lannion, France – sequence: 2 givenname: Francoise surname: Fessant fullname: Fessant, Francoise organization: Orange Labs., Lannion, France – sequence: 3 givenname: Isabelle surname: Tellier fullname: Tellier, Isabelle email: isabelle.tellier@univ-orleans.fr organization: LIFO, Univ. d'Orleans, Orleans, France |
| BookMark | eNotjMtOwzAURI0ACSjZsmHjH0ixHT-XVcQjUqWiUgS7yomvW6PEqRJ3wd8TCqvROaOZG3QR-wgI3VEyp5SYh48qrxabOSOT0OoMZUZpoqQRnBrKz09MOeNcc83MFcrG8YsQQikjXOhr9LkGd2xC3OG0B1z2rcvfkh0Sfh36uoUOhzjZmCAmvIam7zqIzqbQx2kw9MfdHq8OIf5y2dpxDD40p_oWXXrbjpD95wy9Pz1uypd8uXquysUyt1SSlBfOgdcN0VZLJ5wAwb1hUlKjOHhwNeG2brwExbg2hVBWGW9s7SQTwllazND9328AgO1hCJ0dvrdCUimKovgB1cBV_g |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WI-IAT.2010.87 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings Accès Toulouse INP et ENVT - IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9780769541914 0769541917 |
| EndPage | 207 |
| ExternalDocumentID | 5616533 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-a160t-3ddef8c08a86d5d5e54f92661974efedb04abcf6e72489357a79f9abd6255da13 |
| IEDL.DBID | RIE |
| ISBN | 9781424484829 1424484820 |
| IngestDate | Wed Sep 03 07:11:07 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a160t-3ddef8c08a86d5d5e54f92661974efedb04abcf6e72489357a79f9abd6255da13 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_5616533 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Aug. |
| PublicationDateYYYYMMDD | 2010-08-01 |
| PublicationDate_xml | – month: 08 year: 2010 text: 2010-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology |
| PublicationTitleAbbrev | wi-iat |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001120458 ssj0000452489 |
| Score | 1.5890082 |
| Snippet | Like search engines, recommender systems have become a tool that cannot be ignored by websites with a large selection of products, music, news or simply... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 204 |
| SubjectTerms | Blogs Buildings Collaborative filtering Filtering Motion pictures Numerical models Opinion classification Recommender systems Reviews User Generated Content Web 2.0 |
| Title | Reducing the Cold-Start Problem in Content Recommendation through Opinion Classification |
| URI | https://ieeexplore.ieee.org/document/5616533 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH60xYOnqq24k4NHYztmP0qxWJBapGJvJZMFCjotdervN8lMK4IXb5NZmOGFzFvyvu8DuFbeGEW4x1I5iSkxOdbEEUy5lUKbLIQcCSj8JMZjOZupSQNudlgY51xqPnO38TDt5dul2cRSWS_4eh7CkyY0heAVVmtXT4nU4LRmTk_1lSwSrcstlkvS4Oq2FE_1WNUkjllf9d5GeHQ_rVq95G-pleRphu3_feMBdH8ge2iyc0aH0HDFEbS3mg2oXsIdmL1ErtZwCwqRHxos3y0O8ea6jA9HZRm0KFBirCpKFFPTj_C6SnYJ1ZI-6Hm1KOI46WnGTqN0uQuvw4fp4BHX6gpYZ7xfYhJ-bF6avtSSW2aZY9Sr6K5DhuG8s3mf6tx47kS0K2FCC-WVzm3ImJjVGTmGVrEs3AkgzzwzlBCeS0M11yo3uSCG3DmrhWD6FDrRUPNVRaAxr2109vfpc9ivtuhjl90FtMr1xl3CnvkqF5_rqzTr35hQqo8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxGG0QTfSECsbdHjxamaH70RANRERiMHIjnS4JiQ4EB3-_bWfAmHjxNp0lM_nSzrf0e-8BcC2d1hIzh4S0AhGsM6SwxYgwI7jSqQ85IlB4wIdDMZnIUQ3cbLAw1trYfGZvw2HcyzdzvQqlsrb39cyHJ1tgmxLSSUq01qaiEsjBScWdHissaaBaF2s0lyDe2a1JnqqxrGgc00S23_qofzcum73Eb7GV6GseGv_7yn3Q-gHtwdHGHR2Ams0PQWOt2gCrRdwEk5fA1upvgT72g935u0E-4lwW4eGgLQNnOYycVXkBQ3L64V9XCi_BStQHPi9meRhHRc3QaxQvt8Drw_2420OVvgJSKUsKhP2vzQmdCCWYoYZaSpwMDtvnGNZZkyVEZdoxy4NdMeWKSydVZnzORI1K8RGo5_PcHgPoqKOaYMwyoYliSmY641jjjjWKc6pOQDMYarooKTSmlY1O_z59BXZ746fBdNAfPp6BvXLDPvTcnYN6sVzZC7Cjv4rZ5_IyzoBvqM-t1g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE%2FWIC%2FACM+International+Conference+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Reducing+the+Cold-Start+Problem+in+Content+Recommendation+through+Opinion+Classification&rft.au=Poirier%2C+Damien&rft.au=Fessant%2C+Francoise&rft.au=Tellier%2C+Isabelle&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424484829&rft.volume=1&rft.spage=204&rft.epage=207&rft_id=info:doi/10.1109%2FWI-IAT.2010.87&rft.externalDocID=5616533 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/sc.gif&client=summon&freeimage=true |

