Reducing the Cold-Start Problem in Content Recommendation through Opinion Classification

Like search engines, recommender systems have become a tool that cannot be ignored by websites with a large selection of products, music, news or simply webpages links. The performance of this kind of system depends on a large amount of information. At the same time, the amount of information on the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Ročník 1; s. 204 - 207
Hlavní autoři: Poirier, Damien, Fessant, Francoise, Tellier, Isabelle
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2010
Témata:
ISBN:9781424484829, 1424484820
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Like search engines, recommender systems have become a tool that cannot be ignored by websites with a large selection of products, music, news or simply webpages links. The performance of this kind of system depends on a large amount of information. At the same time, the amount of information on the Web is continuously growing, especially due to increased User Generated Content since the apparition of Web 2.0. In this paper, we propose a method that exploits blog textual data in order to supply a recommender system. The method we propose has two steps. First, subjective texts are labelled according to their expressed opinion in order to build a user-item-rating matrix. Second, this matrix is used to establish recommendations thanks to a collaborative filtering technique.
AbstractList Like search engines, recommender systems have become a tool that cannot be ignored by websites with a large selection of products, music, news or simply webpages links. The performance of this kind of system depends on a large amount of information. At the same time, the amount of information on the Web is continuously growing, especially due to increased User Generated Content since the apparition of Web 2.0. In this paper, we propose a method that exploits blog textual data in order to supply a recommender system. The method we propose has two steps. First, subjective texts are labelled according to their expressed opinion in order to build a user-item-rating matrix. Second, this matrix is used to establish recommendations thanks to a collaborative filtering technique.
Author Poirier, Damien
Fessant, Francoise
Tellier, Isabelle
Author_xml – sequence: 1
  givenname: Damien
  surname: Poirier
  fullname: Poirier, Damien
  email: damien.poirier@orange-ftgroup.com
  organization: Orange Labs., Lannion, France
– sequence: 2
  givenname: Francoise
  surname: Fessant
  fullname: Fessant, Francoise
  organization: Orange Labs., Lannion, France
– sequence: 3
  givenname: Isabelle
  surname: Tellier
  fullname: Tellier, Isabelle
  email: isabelle.tellier@univ-orleans.fr
  organization: LIFO, Univ. d'Orleans, Orleans, France
BookMark eNotjMtOwzAURI0ACSjZsmHjH0ixHT-XVcQjUqWiUgS7yomvW6PEqRJ3wd8TCqvROaOZG3QR-wgI3VEyp5SYh48qrxabOSOT0OoMZUZpoqQRnBrKz09MOeNcc83MFcrG8YsQQikjXOhr9LkGd2xC3OG0B1z2rcvfkh0Sfh36uoUOhzjZmCAmvIam7zqIzqbQx2kw9MfdHq8OIf5y2dpxDD40p_oWXXrbjpD95wy9Pz1uypd8uXquysUyt1SSlBfOgdcN0VZLJ5wAwb1hUlKjOHhwNeG2brwExbg2hVBWGW9s7SQTwllazND9328AgO1hCJ0dvrdCUimKovgB1cBV_g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2010.87
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769541914
0769541917
EndPage 207
ExternalDocumentID 5616533
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a160t-3ddef8c08a86d5d5e54f92661974efedb04abcf6e72489357a79f9abd6255da13
IEDL.DBID RIE
ISBN 9781424484829
1424484820
IngestDate Wed Sep 03 07:11:07 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a160t-3ddef8c08a86d5d5e54f92661974efedb04abcf6e72489357a79f9abd6255da13
PageCount 4
ParticipantIDs ieee_primary_5616533
PublicationCentury 2000
PublicationDate 2010-Aug.
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-Aug.
PublicationDecade 2010
PublicationTitle 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
PublicationTitleAbbrev wi-iat
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001120458
ssj0000452489
Score 1.5891377
Snippet Like search engines, recommender systems have become a tool that cannot be ignored by websites with a large selection of products, music, news or simply...
SourceID ieee
SourceType Publisher
StartPage 204
SubjectTerms Blogs
Buildings
Collaborative filtering
Filtering
Motion pictures
Numerical models
Opinion classification
Recommender systems
Reviews
User Generated Content
Web 2.0
Title Reducing the Cold-Start Problem in Content Recommendation through Opinion Classification
URI https://ieeexplore.ieee.org/document/5616533
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eCpaiu-ycGjsbvtJrs5SrFYkFqkYm8lTyjottStv99MNq0IXrxt9sGG2cc3M5n5PoAbzZRIvRtAubSC-peCUcmRCVNy9D5S5WTgmX3Kx-NiNhOTBtzuemGstaH4zN7hZljLN0u9wVRZ12M99-7JHuzleV73au3yKUgNnkXm9JBfSZFovdj2chWZh7otxVMci0jimCai-zaio_tpXepV_JZaCUgzbP1vjofQ-WnZI5MdGB1Bw5bH0NpqNpD4Cbdh9oJcrf4U4j0_Mli-G-r9zXWFF6OyDFmUJDBWlRXB0PTD366WXSJR0oc8rxYljoOeJlYahcMdeB0-TAePNKorUJnypKJ9_2NzhU4KWXDDDLMscwLh2kcY1lmjkkwq7bjN0a59lstcOCGV8RETMzLtn0CzXJb2FIhgwng_E5lVhcc3LrPECqV6zCVa9xJ1Bm001HxVE2jMo43O_959AQf1Ej1W2V1Cs1pv7BXs669q8bm-Dk_9GxdGqJQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT8IwEL4gmugTKhh_2wcfrWywduujIRKIiMRg5I20a5eQ4CA4_PvtdQVj4otv635kzaXbd3e9-z6A25QpEVo3gHJpBLWLglHJkQlTcvQ-QpVJxzM7iIfDZDIRowrcbXthjDGu-Mzc46Hby9eLdI2psqbFem7dkx3YZVHUCsturW1GBcnBI8-d7jIsIVKtJ5turiSyYLchefJj4Wkcw0A03_u0_zAui72S32IrDmu6tf_N8hAaP017ZLSFoyOomPwYahvVBuI_4jpMXpGt1d5CrO9HOou5ptbjXBX4MGrLkFlOHGdVXhAMTj_s60rhJeJFfcjLcpbj2ClqYq2Ru9yAt-7juNOjXl-BypAHBW3bX1uWpEEiE66ZZoZFmUDAtjGGyYxWQSRVmnETo13bLJaxyIRU2sZMTMuwfQLVfJGbUyCCCW09TeRWFRbhuIwCI5RqsSxI01agzqCOhpouSwqNqbfR-d-nb2C_N34eTAf94dMFHJQb9lhzdwnVYrU2V7CXfhWzz9W1WwHfDjur2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE%2FWIC%2FACM+International+Conference+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Reducing+the+Cold-Start+Problem+in+Content+Recommendation+through+Opinion+Classification&rft.au=Poirier%2C+Damien&rft.au=Fessant%2C+Francoise&rft.au=Tellier%2C+Isabelle&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424484829&rft.volume=1&rft.spage=204&rft.epage=207&rft_id=info:doi/10.1109%2FWI-IAT.2010.87&rft.externalDocID=5616533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424484829/sc.gif&client=summon&freeimage=true