Exascale Deep Learning for Climate Analytics

We extract pixel-level masks of extreme weather patterns using variants of Tiramisu and DeepLabv3+ neural networks. We describe improvements to the software frameworks, input pipeline, and the network training algorithms necessary to efficiently scale deep learning on the Piz Daint and Summit system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SC18: International Conference for High Performance Computing, Networking, Storage and Analysis S. 649 - 660
Hauptverfasser: Kurth, Thorsten, Treichler, Sean, Romero, Joshua, Mudigonda, Mayur, Luehr, Nathan, Phillips, Everett, Mahesh, Ankur, Matheson, Michael, Deslippe, Jack, Fatica, Massimiliano, Prabhat, Prabhat, Houston, Michael
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2018
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extract pixel-level masks of extreme weather patterns using variants of Tiramisu and DeepLabv3+ neural networks. We describe improvements to the software frameworks, input pipeline, and the network training algorithms necessary to efficiently scale deep learning on the Piz Daint and Summit systems. The Tiramisu network scales to 5300 P100 GPUs with a sustained throughput of 21.0 PF/s and parallel efficiency of 79.0%. DeepLabv3+ scales up to 27360 V100 GPUs with a sustained throughput of 325.8 PF/s and a parallel efficiency of 90.7% in single precision. By taking advantage of the FP16 Tensor Cores, a half-precision version of the DeepLabv3+ network achieves a peak and sustained throughput of 1.13 EF/s and 999.0 PF/s respectively.
DOI:10.1109/SC.2018.00054