A decomposition-based constraint optimization approach for statically scheduling task graphs with communication delays to multiprocessors

We present a decomposition strategy to speed up constraint optimization for a representative multiprocessor scheduling problem. In the manner of Benders decomposition, our technique solves relaxed versions of the problem and iteratively learns constraints to prune the solution space. Typical formula...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the conference on Design, automation and test in Europe s. 57 - 62
Hlavní autoři: Satish, Nadathur, Ravindran, Kaushik, Keutzer, Kurt
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: San Jose, CA, USA EDA Consortium 16.04.2007
Edice:ACM Conferences
Témata:
ISBN:3981080122, 9783981080124
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a decomposition strategy to speed up constraint optimization for a representative multiprocessor scheduling problem. In the manner of Benders decomposition, our technique solves relaxed versions of the problem and iteratively learns constraints to prune the solution space. Typical formulations suffer prohibitive run times even on medium-sized problems with less than 30 tasks. Our decomposition strategy enhances constraint optimization to robustly handle instances with over 100 tasks. Moreover, the extensibility of constraint formulations permits realistic application and resource constraints, which is a limitation of common heuristic methods for scheduling. The inherent extensibility, coupled with improved run times from a decomposition strategy, posit constraint optimization as a powerful tool for resource constrained scheduling and multiprocessor design space exploration.
ISBN:3981080122
9783981080124
DOI:10.5555/1266366.1266381