Learning revised models for planning in adaptive systems

Environment domain models are a key part of the information used by adaptive systems to determine their behaviour. These models can be incomplete or inaccurate. In addition, since adaptive systems generally operate in environments which are subject to change, these models are often also out of date....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the 2013 International Conference on Software Engineering S. 63 - 71
Hauptverfasser: Sykes, Daniel, Corapi, Domenico, Magee, Jeff, Kramer, Jeff, Russo, Alessandra, Inoue, Katsumi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: Piscataway, NJ, USA IEEE Press 18.05.2013
Schriftenreihe:ACM Conferences
Schlagworte:
ISBN:1467330760, 9781467330763
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Environment domain models are a key part of the information used by adaptive systems to determine their behaviour. These models can be incomplete or inaccurate. In addition, since adaptive systems generally operate in environments which are subject to change, these models are often also out of date. To update and correct these models, the system should observe how the environment responds to its actions, and compare these responses to those predicted by the model. In this paper, we use a probabilistic rule learning approach, NoMPRoL, to update models using feedback from the running system in the form of execution traces. NoMPRoL is a technique for non-monotonic probabilistic rule learning based on a transformation of an inductive logic programming task into an equivalent abductive one. In essence, it exploits consistent observations by finding general rules which explain observations in terms of the conditions under which they occur. The updated models are then used to generate new behaviour with a greater chance of success in the actual environment encountered.
AbstractList Environment domain models are a key part of the information used by adaptive systems to determine their behaviour. These models can be incomplete or inaccurate. In addition, since adaptive systems generally operate in environments which are subject to change, these models are often also out of date. To update and correct these models, the system should observe how the environment responds to its actions, and compare these responses to those predicted by the model. In this paper, we use a probabilistic rule learning approach, NoMPRoL, to update models using feedback from the running system in the form of execution traces. NoMPRoL is a technique for non-monotonic probabilistic rule learning based on a transformation of an inductive logic programming task into an equivalent abductive one. In essence, it exploits consistent observations by finding general rules which explain observations in terms of the conditions under which they occur. The updated models are then used to generate new behaviour with a greater chance of success in the actual environment encountered.
Author Russo, Alessandra
Corapi, Domenico
Sykes, Daniel
Inoue, Katsumi
Kramer, Jeff
Magee, Jeff
Author_xml – sequence: 1
  givenname: Daniel
  surname: Sykes
  fullname: Sykes, Daniel
  email: daniel.sykes@imperial.ac.uk
  organization: Imperial College London, UK
– sequence: 2
  givenname: Domenico
  surname: Corapi
  fullname: Corapi, Domenico
  email: d.corapi@imperial.ac.uk
  organization: Imperial College London, UK
– sequence: 3
  givenname: Jeff
  surname: Magee
  fullname: Magee, Jeff
  email: j.magee@imperial.ac.uk
  organization: Imperial College London, UK
– sequence: 4
  givenname: Jeff
  surname: Kramer
  fullname: Kramer, Jeff
  email: j.kramer@imperial.ac.uk
  organization: Imperial College London, UK
– sequence: 5
  givenname: Alessandra
  surname: Russo
  fullname: Russo, Alessandra
  email: a.russo@imperial.ac.uk
  organization: Imperial College London, UK
– sequence: 6
  givenname: Katsumi
  surname: Inoue
  fullname: Inoue, Katsumi
  email: ki@nii.ac.jp
  organization: National Institute of Informatics, Japan
BookMark eNqNj01LxDAYhAMq6K579pqjl9a8zWePsvgFBS96DknzRqptujRlwX9vXfsDHBjmMMPAsyHnaUxIyA2wUi66q4RR2pjylLU-IxsQSnPOtGKXZJfzJ2MMoF6sr4hp0E2pSx90wmOXMdBhDNhnGseJHnqXTl2XqAvuMHdHpPk7zzjka3IRXZ9xt-aWvD8-vO2fi-b16WV_3xQOpJ4LYMhFGwTjXgEPqq6Bo5MyBue4rmQFwccYoJWtqERUqIQL0bTMeGkkKL4lt3-_rh2sH8evbIHZX1K7ktqVdJmW_5xaP3UY-Q9mD1Z7
ContentType Conference Proceeding
DOI 10.5555/2486788.2486797
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 71
GroupedDBID 6IE
6IF
6IG
6IH
6IK
6IL
6IN
AAJGR
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
IERZE
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a157t-10e34cd403b613d69913ea55fdaa372521dbffd1c5c424f6e64adf8c08b585163
ISBN 1467330760
9781467330763
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000333965800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Jan 31 06:36:14 EST 2024
Wed Jan 31 06:52:01 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MeetingName ICSE '13: 35th International Conference on Software Engineering
MergedId FETCHMERGED-LOGICAL-a157t-10e34cd403b613d69913ea55fdaa372521dbffd1c5c424f6e64adf8c08b585163
PageCount 9
ParticipantIDs acm_books_10_5555_2486788_2486797
acm_books_10_5555_2486788_2486797_brief
PublicationCentury 2000
PublicationDate 20130518
PublicationDateYYYYMMDD 2013-05-18
PublicationDate_xml – month: 05
  year: 2013
  text: 20130518
  day: 18
PublicationDecade 2010
PublicationPlace Piscataway, NJ, USA
PublicationPlace_xml – name: Piscataway, NJ, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 2013 International Conference on Software Engineering
PublicationYear 2013
Publisher IEEE Press
Publisher_xml – name: IEEE Press
SSID ssj0001190117
Score 1.6699727
Snippet Environment domain models are a key part of the information used by adaptive systems to determine their behaviour. These models can be incomplete or...
SourceID acm
SourceType Publisher
StartPage 63
SubjectTerms Computing methodologies -- Machine learning
Computing methodologies -- Modeling and simulation -- Model development and analysis
Software and its engineering -- Software creation and management -- Designing software -- Software implementation planning -- Software design techniques
Software and its engineering -- Software creation and management -- Software development process management
Title Learning revised models for planning in adaptive systems
WOSCitedRecordID wos000333965800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA9uePCmOHF-EUHwVF2bpknPoniYY-CU3Ur6ERliHevU-d_7Xpqu3RDUgzt0Wygpye_1vZf3SciZUkqncMpxvBiLanui54AeFzqh4MILEqW56UXw2BeDgRyPw6GNVS1MOwGR53KxCKf_CjWMAdiYOvsHuJeTwgD8BtDhCrDDdU0j_lb4DJeDReX_B-nL1kx_daIfegvugRd_YAhYozphk5b6lf0EY4ILUFFN_xxTyQHbUJuuR2g4UamamlCkolEHHc03n88lNyoT2pd-DyC_aZnojnUggCZr-_iTDRDKtF7KBIwjm62M4oZmBdDTXWNFK5YM18QNWuZbnW5XAk_gjIt8nDH0HjaYrOWIpbguG7isCwIOH8x1wXqCUl6Y71C0SEsIt0zyqw1xqBK5wiT9VQ-raoHZ_6ysCYWTXq5NiUpN8tJQSUbbpFOvmNag75CNLN8lsoKMWshoCRkFyGgFGZ3ktIKMWsg65OHmenR169gmGY5yuZiDGM2Yn6R-j8WgmaUB6PssU5zrVCkmPNDO0ljD65jwxPd8HWSBr1Itk56M0SMcsD3Szl_zbJ9QzpnnBnGqXeZjFzOZSKHQ5ORiWh2Pu-QU1hohrRcRHB5xPyK7H5Hdjy45__GeKAba0Ae_mO2QbNWEckTa89lbdkw2k_f5pJidGBy_AIPiV1k
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2013+International+Conference+on+Software+Engineering&rft.atitle=Learning+revised+models+for+planning+in+adaptive+systems&rft.au=Sykes%2C+Daniel&rft.au=Corapi%2C+Domenico&rft.au=Magee%2C+Jeff&rft.au=Kramer%2C+Jeff&rft.series=ACM+Conferences&rft.date=2013-05-18&rft.pub=IEEE+Press&rft.isbn=1467330760&rft.spage=63&rft.epage=71&rft_id=info:doi/10.5555%2F2486788.2486797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467330763/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467330763/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467330763/sc.gif&client=summon&freeimage=true