Probabilistic Inference for Datalog with Correlated Inputs

Probabilistic extensions of logic programming languages, such as ProbLog, integrate logical reasoning with probabilistic inference to evaluate probabilities of output relations; however, prior work does not account for potential statistical correlations among input facts. This paper introduces Prali...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of ACM on programming languages Ročník 9; číslo OOPSLA2; s. 220 - 247
Hlavní autoři: Wang, Jingbo, Halalingaiah, Shashin, Chen, Weiyi, Wang, Chao, Dillig, Işıl
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 09.10.2025
Témata:
ISSN:2475-1421, 2475-1421
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Probabilistic extensions of logic programming languages, such as ProbLog, integrate logical reasoning with probabilistic inference to evaluate probabilities of output relations; however, prior work does not account for potential statistical correlations among input facts. This paper introduces Praline, a new extension to Datalog designed for precise probabilistic inference in the presence of (partially known) input correlations. We formulate the inference task as a constrained optimization problem, where the solution yields sound and precise probability bounds for output facts. However, due to the complexity of the resulting optimization problem, this approach alone often does not scale to large programs. To address scalability, we propose a more efficient δ-exact inference algorithm that leverages constraint solving, static analysis, and iterative refinement. Our empirical evaluation on challenging real-world benchmarks, including side-channel analysis, demonstrates that our method not only scales effectively but also delivers tight probability bounds.
AbstractList Probabilistic extensions of logic programming languages, such as ProbLog, integrate logical reasoning with probabilistic inference to evaluate probabilities of output relations; however, prior work does not account for potential statistical correlations among input facts. This paper introduces Praline, a new extension to Datalog designed for precise probabilistic inference in the presence of (partially known) input correlations. We formulate the inference task as a constrained optimization problem, where the solution yields sound and precise probability bounds for output facts. However, due to the complexity of the resulting optimization problem, this approach alone often does not scale to large programs. To address scalability, we propose a more efficient δ-exact inference algorithm that leverages constraint solving, static analysis, and iterative refinement. Our empirical evaluation on challenging real-world benchmarks, including side-channel analysis, demonstrates that our method not only scales effectively but also delivers tight probability bounds.
ArticleNumber 280
Author Chen, Weiyi
Dillig, Işıl
Wang, Chao
Halalingaiah, Shashin
Wang, Jingbo
Author_xml – sequence: 1
  givenname: Jingbo
  orcidid: 0000-0001-5877-2677
  surname: Wang
  fullname: Wang, Jingbo
  email: wang6203@purdue.edu
  organization: Purdue University, West Lafayette, USA
– sequence: 2
  givenname: Shashin
  orcidid: 0000-0002-1268-4345
  surname: Halalingaiah
  fullname: Halalingaiah, Shashin
  email: shashin@cs.utexas.edu
  organization: University of Texas at Austin, Austin, USA
– sequence: 3
  givenname: Weiyi
  orcidid: 0009-0009-6276-3525
  surname: Chen
  fullname: Chen, Weiyi
  email: chen5332@purdue.edu
  organization: Purdue University, West Lafayette, USA
– sequence: 4
  givenname: Chao
  orcidid: 0009-0003-4684-3943
  surname: Wang
  fullname: Wang, Chao
  email: wang626@usc.edu
  organization: University of Southern California, Los Angeles, USA
– sequence: 5
  givenname: Işıl
  orcidid: 0000-0001-8006-1230
  surname: Dillig
  fullname: Dillig, Işıl
  email: isil@cs.utexas.edu
  organization: University of Texas at Austin, Austin, USA
BookMark eNpNj8tLw0AYxBepYK3Fu6fcPMXuK_vwJrHaQkEPvYdvH9GVNFt2I-J_b0qreJoZ5sfAXKJJH3uP0DXBd4TwasGkYLhSZ2hKuaxKwimZ_PMXaJ7zB8aYaMYV01N0_5qiARO6kIdgi3Xf-uR764s2puIRBujiW_EVhveijin5DgbvRmr_OeQrdN5Cl_38pDO0fVpu61W5eXle1w-bEkglVOmMxlwaAw5bi6WzTEjVSm4kdQfVggtNOBBwylmwlaGYUe_ZGBmlbIZuj7M2xZyTb5t9CjtI3w3BzeF0czo9kjdHEuzuD_otfwAVL1Jf
Cites_doi 10.1145/3559102
10.7551/mitpress/7432.003.0007
10.7551/mitpress/4298.003.0069
10.1145/3133904
10.1145/2980983.2908096
10.14778/1978665.1978669
10.7551/mitpress/7432.003.0012
10.1007/978-3-030-99524-9_24
10.1145/1133981.1134018
10.1145/3656448
10.1007/978-3-319-29604-3_5
10.1145/3586051
10.1145/2491956.2462179
10.1145/2594291.2594320
10.1007/978-3-642-28869-2_9
10.1145/215206.215372
10.1145/2775051.2677000
10.1145/2950290.2950291
10.1007/978-3-319-08867-9_8
10.1145/3649844
10.1145/3314221.3314619
10.1007/978-3-319-41528-4_4
10.1007/978-3-319-96142-2_12
10.5281/zenodo.15760564
10.1109/ICSE43902.2021.00079
10.1007/978-3-642-31365-3_23
10.1145/3428208
10.1145/1640089.1640108
10.1007/11575467_8
10.1145/2594291.2594327
10.1145/3132700
10.1145/3133881
10.1017/S1471068414000076
10.1145/3192366.3192417
10.1145/3591280
10.1145/3106237.3106243
10.18637/jss.v035.i03
10.1007/978-3-540-27775-0_30
10.1017/S1471068409003767
10.1016/j.ijar.2016.06.009
10.1145/3519939.3523721
10.1145/3453483.3454078
10.1109/TC.1986.1676819
10.1145/3338906.3338913
10.1007/978-3-319-23461-8_37
ContentType Journal Article
Copyright Owner/Author
Copyright_xml – notice: Owner/Author
DBID AAYXX
CITATION
DOI 10.1145/3763058
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-1421
EndPage 247
ExternalDocumentID 10_1145_3763058
3763058
GrantInformation_xml – fundername: NSF (National Science Foundation)
  grantid: CCF-1762299, CCF-1918889, CNS-1908304, CCF-1901376, CNS-2120696, CCF-2210831, CCF-2319471, CCF-2422130, CCF-2403211
  funderid: https://doi.org/10.13039/100000001
GroupedDBID AAKMM
AAYFX
ACM
AEFXT
AEJOY
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
GUFHI
LHSKQ
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-a1568-db9047bbad0cc07dc3678f74b72d8f749646914a1ad8dcac5b2032ee3d8d3223
ISSN 2475-1421
IngestDate Thu Oct 16 04:43:36 EDT 2025
Mon Oct 13 16:30:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue OOPSLA2
Keywords probabilistic logic programming
constrained optimization
type inference
Language English
License This work is licensed under Creative Commons Attribution International 4.0.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a1568-db9047bbad0cc07dc3678f74b72d8f749646914a1ad8dcac5b2032ee3d8d3223
ORCID 0000-0001-5877-2677
0009-0009-6276-3525
0009-0003-4684-3943
0000-0001-8006-1230
0000-0002-1268-4345
OpenAccessLink https://dl.acm.org/doi/10.1145/3763058
PageCount 28
ParticipantIDs crossref_primary_10_1145_3763058
acm_primary_3763058
PublicationCentury 2000
PublicationDate 20251009
2025-10-09
PublicationDateYYYYMMDD 2025-10-09
PublicationDate_xml – month: 10
  year: 2025
  text: 20251009
  day: 09
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle Proceedings of ACM on programming languages
PublicationTitleAbbrev ACM PACMPL
PublicationYear 2025
Publisher ACM
Publisher_xml – name: ACM
References Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. 2007. ProbLog: A probabilistic Prolog and its application in link discovery. In IJCAI 2007, Proceedings of the 20th international joint conference on artificial intelligence. 2462–2467.
Feras A Saad, Martin C Rinard, and Vikash K Mansinghka. 2021. SPPL: probabilistic programming with fast exact symbolic inference. In Proceedings of the 42nd acm sigplan international conference on programming language design and implementation. 804–819. https://doi.org/doi/10.1145/3453483.3454078 /10.1145/3453483.3454078
Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. 2004. Logic programs with annotated disjunctions. In Logic Programming: 20th International Conference, ICLP 2004, Saint-Malo, France, September 6-10, 2004. Proceedings 20. 431–445.
Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact symbolic inference for probabilistic programs. In Computer Aided Verification: 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I 28. 62–83.
Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Ben Taskar. 2007. Probabilistic relational models.
Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press. https://doi.org/doi/10.5555/1795555
Vince Bárány, Balder Ten Cate, Benny Kimelfeld, Dan Olteanu, and Zografoula Vagena. 2017. Declarative probabilistic programming with datalog. ACM Transactions on Database Systems (TODS), 42, 4 (2017), 1–35. https://doi.org/10.1145/3132700 10.1145/3132700
Ludger Rüschendorf. [n.d.]. Fréchet-bounds and their applications. In Advances in Probability Distributions with Given Marginals: beyond the copulas. Springer, 151–187.
Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. 2017. Fairsquare: probabilistic verification of program fairness. Proceedings of the ACM on Programming Languages, 1, OOPSLA (2017), 1–30. https://doi.org/doi/10.1145/3133904 /10.1145/3133904
Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective analysis: context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. 485–495. https://doi.org/doi/10.1145/2499370.2462179 /10.1145/2499370.2462179
Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling exact inference for discrete probabilistic programs. Proceedings of the ACM on Programming Languages, 4, OOPSLA (2020), 1–31. https://doi.org/doi/10.1145/3428208 /10.1145/3428208
Adnan Darwiche. 2009. Modeling and reasoning with Bayesian networks. Cambridge university press.
Taisuke Sato. 1995. A statistical learning method for logic programs with distribution semantics.
Stephen H Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. 2017. Hinge-loss markov random fields and probabilistic soft logic. Journal of Machine Learning Research, 18, 109 (2017), 1–67.
Sicun Gao, Jeremy Avigad, and Edmund M Clarke. 2012. δ -complete decision procedures for satisfiability over the reals. In International Joint Conference on Automated Reasoning. 286–300. https://doi.org/abs/1204.3513
Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and Implementation. 308–319. https://doi.org/doi/10.1145/1133981.1134018 /10.1145/1133981.1134018
Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. 2017. Effective interactive resolution of static analysis alarms. Proceedings of the ACM on Programming Languages, 1, OOPSLA (2017), 1–30. https://doi.org/doi/10.1145/3133881 /10.1145/3133881
Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static analysis for probabilistic programs: inferring whole program properties from finitely many paths. In Proceedings of the 34th ACM SIGPLAN conference on Programming language design and implementation. 447–458.
Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, et al. 2022. cvc5: A versatile and industrial-strength SMT solver. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. 415–442.
Ziyang Li, Jiani Huang, and Mayur Naik. 2023. Scallop: A language for neurosymbolic programming. Proceedings of the ACM on Programming Languages, 7, PLDI (2023), 1463–1487. https://doi.org/doi/10.1145/3591280 /10.1145/3591280
Bob Bixby. 2007. The gurobi optimizer. Transp. Re-search Part B, 41, 2 (2007), 159–178.
Aws Albarghouthi and Justin Hsu. 2017. Synthesizing coupling proofs of differential privacy. Proceedings of the ACM on Programming Languages, 2, POPL (2017), 1–30. https://doi.org/doi/10.1145/3158146 /10.1145/3158146
Patrick Cousot and Michael Monerau. 2012. Probabilistic abstract interpretation. In European Symposium on Programming. 169–193.
Lutz Klinkenberg, Christian Blumenthal, Mingshuai Chen, Darion Haase, and Joost-Pieter Katoen. 2024. Exact Bayesian Inference for Loopy Probabilistic Programs using Generating Functions. Proceedings of the ACM on Programming Languages, 8, OOPSLA1 (2024), 923–953. https://doi.org/doi/10.1145/3649844 /10.1145/3649844
Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for flexible probabilistic inference. In International conference on artificial intelligence and statistics. 1682–1690.
Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On abstraction refinement for program analyses in Datalog. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. 239–248. https://doi.org/doi/10.1145/2666356.2594327 /10.1145/2666356.2594327
Jingbo Wang, Chungha Sung, and Chao Wang. 2019. Mitigating power side channels during compilation. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 590–601. https://doi.org/doi/10.1145/3338906.3338913 /10.1145/3338906.3338913
Kristian Kersting and Luc De Raedt. 2007. Bayesian logic programming: Theory and tool.
Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Naijun Zhan. 2023. Lower bounds for possibly divergent probabilistic programs. Proceedings of the ACM on Programming Languages, 7, OOPSLA1 (2023), 696–726. https://doi.org/doi/10.1145/3586051 /10.1145/3586051
Raven Beutner, C-H Luke Ong, and Fabian Zaiser. 2022. Guaranteed bounds for posterior inference in universal probabilistic programming. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 536–551. https://doi.org/doi/10.1145/3519939.3523721 /10.1145/3519939.3523721
Markus Kusano and Chao Wang. 2017. Thread-modular static analysis for relaxed memory models. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. 337–348. https://doi.org/doi/10.1145/3106237.3106243 /10.1145/3106237.3106243
Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Isil Dillig. 2025. Reproduction Package for Article ‘Probabilistic Inference for Datalog with Correlated Inputs’. ACM. https://doi.org/10.5281/zenodo.15760564 10.5281/zenodo.15760564
Marco Scutari. 2009. Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv:0908.3817.
Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An introduction to probabilistic programming. arXiv preprint arXiv:1809.10756.
Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L Ong, and Andrey Kolobov. 2007. BLOG: Probabilistic models with unknown objects.
Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt. 2015. Inference and learning in probabilistic logic programs using weighted boolean formulas. Theory and Practice of Logic Programming, 15, 3 (2015), 358–401. https://doi.org/abs/1304.6810
Lutz Klinkenberg, Tobias Winkler, Mingshuai Chen, and Joost-Pieter Katoen. 2023. Exact probabilistic inference using generating functions. arXiv preprint arXiv:2302.00513.
Markus Kusano and Chao Wang. 2016. Flow-sensitive composition of thread-modular abstract interpretation. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 799–809. https://doi.org/doi/10.1145/2950290.2950291 /10.1145/2950290.2950291
Martin Grohe, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Peter Lindner. 2022. Generative datalog with continuous distributions. J. ACM, 69, 6 (2022), 1–52. https://doi.org/doi/10.1145/3559102 /10.1145/3559102
Brend Wanders, Maurice van Keulen, and Jan Flokstra. 2016. Judged: a probabilistic datalog with dependencies. In Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.
John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. 2005. Using Datalog with binary decision diagrams for program analysis. In Asian Symposium on Programming Languages and Systems. 97–118. https://doi.org/doi/10.1007/11575467_8 /10.1007/11575467_8
Norbert Fuhr. 1995. Probabilistic datalog—a logic for powerful retrieval methods. In Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval. 282–290. https://doi.org/doi/10.1145/215206.215372 /10.1145/215206.215372
Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018. User-guided program reasoning using Bayesian inference. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. 722–735. https://doi.org/doi/10.1145/3296979.3192417 /10.1145/3296979.3192417
Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. 2018. SCInfer: Refinement-based verification of software countermeasures against side-channel attacks. In International Conference on Computer Aided Verification. 157–177.
Joost Vennekens, Marc Denecker, and Maurice Bruynooghe. 2009. CP-logic: A language
Bingham Eli (e_1_2_1_9_1) 2019; 20
Reps Thomas W (e_1_2_1_44_1)
e_1_2_1_60_1
Hoffman Matthew D (e_1_2_1_27_1) 2018
e_1_2_1_20_1
e_1_2_1_41_1
Wanders Brend (e_1_2_1_55_1) 2016
e_1_2_1_24_1
e_1_2_1_62_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
Ge Hong (e_1_2_1_23_1) 2018
Bach Stephen H (e_1_2_1_4_1) 2017; 18
Bixby Bob (e_1_2_1_10_1) 2007; 41
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_8_1
e_1_2_1_56_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_52_1
Koller Daphne (e_1_2_1_33_1)
e_1_2_1_37_1
Albarghouthi Aws (e_1_2_1_2_1) 2017
e_1_2_1_58_1
e_1_2_1_18_1
Darwiche Adnan (e_1_2_1_14_1)
Jordan Herbert (e_1_2_1_29_1) 2016
e_1_2_1_42_1
Rüschendorf Ludger (e_1_2_1_45_1)
e_1_2_1_40_1
e_1_2_1_46_1
e_1_2_1_61_1
Daxberger Erik (e_1_2_1_15_1) 2021
e_1_2_1_21_1
e_1_2_1_63_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_53_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_36_1
Raedt Luc De (e_1_2_1_16_1) 2007
Milch Brian (e_1_2_1_39_1) 2007
e_1_2_1_59_1
e_1_2_1_19_1
References_xml – reference: Marco Scutari. 2009. Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv:0908.3817.
– reference: Thomas W Reps. 1995. Demand interprocedural program analysis using logic databases. In Applications of Logic Databases. Springer, 163–196.
– reference: Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. 2004. Logic programs with annotated disjunctions. In Logic Programming: 20th International Conference, ICLP 2004, Saint-Malo, France, September 6-10, 2004. Proceedings 20. 431–445.
– reference: Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt. 2015. Inference and learning in probabilistic logic programs using weighted boolean formulas. Theory and Practice of Logic Programming, 15, 3 (2015), 358–401. https://doi.org/abs/1304.6810
– reference: Taisuke Sato. 1995. A statistical learning method for logic programs with distribution semantics.
– reference: Erik Daxberger, Anastasia Makarova, Matteo Turchetta, and Andreas Krause. 2021. Mixed-variable Bayesian optimization. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence. 2633–2639.
– reference: Matthew D Hoffman, Matthew J Johnson, and Dustin Tran. 2018. Autoconj: recognizing and exploiting conjugacy without a domain-specific language. Advances in Neural Information Processing Systems, 31 (2018), https://doi.org/doi/10.5555/3327546.3327731
– reference: Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. 2018. SCInfer: Refinement-based verification of software countermeasures against side-channel attacks. In International Conference on Computer Aided Verification. 157–177.
– reference: Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact symbolic inference for probabilistic programs. In Computer Aided Verification: 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I 28. 62–83.
– reference: Patrick Cousot and Michael Monerau. 2012. Probabilistic abstract interpretation. In European Symposium on Programming. 169–193.
– reference: Bob Bixby. 2007. The gurobi optimizer. Transp. Re-search Part B, 41, 2 (2007), 159–178.
– reference: Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On abstraction refinement for program analyses in Datalog. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. 239–248. https://doi.org/doi/10.1145/2666356.2594327 /10.1145/2666356.2594327
– reference: Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Ben Taskar. 2007. Probabilistic relational models.
– reference: Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang. 2021. Data-driven synthesis of provably sound side channel analyses. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). https://doi.org/doi/10.1109/ICSE43902.2021.00079 /10.1109/ICSE43902.2021.00079
– reference: Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Pierre-Yves Strub. 2015. Higher-order approximate relational refinement types for mechanism design and differential privacy. ACM SIGPLAN Notices, 50, 1 (2015), 55–68. https://doi.org/doi/10.1145/2676726.2677000 /10.1145/2676726.2677000
– reference: Feras A Saad, Martin C Rinard, and Vikash K Mansinghka. 2021. SPPL: probabilistic programming with fast exact symbolic inference. In Proceedings of the 42nd acm sigplan international conference on programming language design and implementation. 804–819. https://doi.org/doi/10.1145/3453483.3454078 /10.1145/3453483.3454078
– reference: Jianlin Li, Eric Wang, and Yizhou Zhang. 2024. Compiling Probabilistic Programs for Variable Elimination with Information Flow. Proceedings of the ACM on Programming Languages, 8, PLDI (2024), 1755–1780. https://doi.org/doi/10.1145/3656448 /10.1145/3656448
– reference: Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and applications. 243–262. https://doi.org/doi/10.1145/1640089.1640108 /10.1145/1640089.1640108
– reference: Lutz Klinkenberg, Christian Blumenthal, Mingshuai Chen, Darion Haase, and Joost-Pieter Katoen. 2024. Exact Bayesian Inference for Loopy Probabilistic Programs using Generating Functions. Proceedings of the ACM on Programming Languages, 8, OOPSLA1 (2024), 923–953. https://doi.org/doi/10.1145/3649844 /10.1145/3649844
– reference: Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for flexible probabilistic inference. In International conference on artificial intelligence and statistics. 1682–1690.
– reference: Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L Ong, and Andrey Kolobov. 2007. BLOG: Probabilistic models with unknown objects.
– reference: Aws Albarghouthi and Justin Hsu. 2017. Synthesizing coupling proofs of differential privacy. Proceedings of the ACM on Programming Languages, 2, POPL (2017), 1–30. https://doi.org/doi/10.1145/3158146 /10.1145/3158146
– reference: Brend Wanders, Maurice van Keulen, and Jan Flokstra. 2016. Judged: a probabilistic datalog with dependencies. In Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.
– reference: John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. 2005. Using Datalog with binary decision diagrams for program analysis. In Asian Symposium on Programming Languages and Systems. 97–118. https://doi.org/doi/10.1007/11575467_8 /10.1007/11575467_8
– reference: Martin Grohe, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Peter Lindner. 2022. Generative datalog with continuous distributions. J. ACM, 69, 6 (2022), 1–52. https://doi.org/doi/10.1145/3559102 /10.1145/3559102
– reference: Lutz Klinkenberg, Tobias Winkler, Mingshuai Chen, and Joost-Pieter Katoen. 2023. Exact probabilistic inference using generating functions. arXiv preprint arXiv:2302.00513.
– reference: Feng Niu, Christopher Ré, AnHai Doan, and Jude Shavlik. 2011. Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS. Proceedings of the VLDB Endowment, 4, 6 (2011), https://doi.org/doi/10.14778/1978665.1978669 /10.14778/1978665.1978669
– reference: Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press. https://doi.org/doi/10.5555/1795555
– reference: Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. 2007. ProbLog: A probabilistic Prolog and its application in link discovery. In IJCAI 2007, Proceedings of the 20th international joint conference on artificial intelligence. 2462–2467.
– reference: Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. 2017. Fairsquare: probabilistic verification of program fairness. Proceedings of the ACM on Programming Languages, 1, OOPSLA (2017), 1–30. https://doi.org/doi/10.1145/3133904 /10.1145/3133904
– reference: Vince Bárány, Balder Ten Cate, Benny Kimelfeld, Dan Olteanu, and Zografoula Vagena. 2017. Declarative probabilistic programming with datalog. ACM Transactions on Database Systems (TODS), 42, 4 (2017), 1–35. https://doi.org/10.1145/3132700 10.1145/3132700
– reference: Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt. 2016. Tp-compilation for inference in probabilistic logic programs. International Journal of Approximate Reasoning, 78 (2016), 15–32. https://doi.org/10.1016/j.ijar.2016.06.009 10.1016/j.ijar.2016.06.009
– reference: Sicun Gao, Jeremy Avigad, and Edmund M Clarke. 2012. δ -complete decision procedures for satisfiability over the reals. In International Joint Conference on Automated Reasoning. 286–300. https://doi.org/abs/1204.3513
– reference: Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, et al. 2022. cvc5: A versatile and industrial-strength SMT solver. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. 415–442.
– reference: Xin Zhang, Radu Grigore, Xujie Si, and Mayur Naik. 2017. Effective interactive resolution of static analysis alarms. Proceedings of the ACM on Programming Languages, 1, OOPSLA (2017), 1–30. https://doi.org/doi/10.1145/3133881 /10.1145/3133881
– reference: V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. 2007. Compilers principles, techniques & tools. pearson Education.
– reference: Yuxin Wang, Zeyu Ding, Guanhong Wang, Daniel Kifer, and Danfeng Zhang. 2019. Proving differential privacy with shadow execution. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. 655–669. https://doi.org/doi/10.1145/3314221.3314619 /10.1145/3314221.3314619
– reference: Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and Implementation. 308–319. https://doi.org/doi/10.1145/1133981.1134018 /10.1145/1133981.1134018
– reference: Kristian Kersting and Luc De Raedt. 2007. Bayesian logic programming: Theory and tool.
– reference: Randal E Bryant. 1986. Graph-based algorithms for boolean function manipulation. Computers, IEEE Transactions on, 100, 8 (1986), 677–691.
– reference: Ziyang Li, Jiani Huang, and Mayur Naik. 2023. Scallop: A language for neurosymbolic programming. Proceedings of the ACM on Programming Languages, 7, PLDI (2023), 1463–1487. https://doi.org/doi/10.1145/3591280 /10.1145/3591280
– reference: Stephen H Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. 2017. Hinge-loss markov random fields and probabilistic soft logic. Journal of Machine Learning Research, 18, 109 (2017), 1–67.
– reference: Hassan Eldib and Chao Wang. 2014. Synthesis of masking countermeasures against side channel attacks. In Computer Aided Verification: 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings 26. 114–130.
– reference: Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis of program analyzers. In Computer Aided Verification: 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28. 422–430.
– reference: Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. 2019. Pyro: Deep universal probabilistic programming. Journal of machine learning research, 20, 28 (2019), 1–6. https://doi.org/doi/abs/10.5555/3322706.3322734
– reference: Jingbo Wang, Shashin Halalingaiah, Weiyi Chen, Chao Wang, and Isil Dillig. 2025. Reproduction Package for Article ‘Probabilistic Inference for Datalog with Correlated Inputs’. ACM. https://doi.org/10.5281/zenodo.15760564 10.5281/zenodo.15760564
– reference: Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Naijun Zhan. 2023. Lower bounds for possibly divergent probabilistic programs. Proceedings of the ACM on Programming Languages, 7, OOPSLA1 (2023), 696–726. https://doi.org/doi/10.1145/3586051 /10.1145/3586051
– reference: Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From datalog to flix: A declarative language for fixed points on lattices. ACM SIGPLAN Notices, 51, 6 (2016), 194–208. https://doi.org/doi/10.1145/2980983.2908096 /10.1145/2980983.2908096
– reference: Anton Dries, Angelika Kimmig, Wannes Meert, Joris Renkens, Guy Van den Broeck, Jonas Vlasselaer, and Luc De Raedt. 2015. Problog2: Probabilistic logic programming. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part III 15. 312–315.
– reference: Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference by program transformation in Hakaru (system description). In Functional and Logic Programming: 13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings 13. 62–79.
– reference: Raven Beutner, C-H Luke Ong, and Fabian Zaiser. 2022. Guaranteed bounds for posterior inference in universal probabilistic programming. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 536–551. https://doi.org/doi/10.1145/3519939.3523721 /10.1145/3519939.3523721
– reference: Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static analysis for probabilistic programs: inferring whole program properties from finitely many paths. In Proceedings of the 34th ACM SIGPLAN conference on Programming language design and implementation. 447–458.
– reference: Markus Kusano and Chao Wang. 2017. Thread-modular static analysis for relaxed memory models. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. 337–348. https://doi.org/doi/10.1145/3106237.3106243 /10.1145/3106237.3106243
– reference: Joost Vennekens, Marc Denecker, and Maurice Bruynooghe. 2009. CP-logic: A language of causal probabilistic events and its relation to logic programming. Theory and practice of logic programming, 9, 3 (2009), 245–308. https://doi.org/10.1017/S1471068409003767 10.1017/S1471068409003767
– reference: Markus Kusano and Chao Wang. 2016. Flow-sensitive composition of thread-modular abstract interpretation. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 799–809. https://doi.org/doi/10.1145/2950290.2950291 /10.1145/2950290.2950291
– reference: Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018. User-guided program reasoning using Bayesian inference. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation. 722–735. https://doi.org/doi/10.1145/3296979.3192417 /10.1145/3296979.3192417
– reference: Jingbo Wang, Chungha Sung, and Chao Wang. 2019. Mitigating power side channels during compilation. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 590–601. https://doi.org/doi/10.1145/3338906.3338913 /10.1145/3338906.3338913
– reference: Adnan Darwiche. 2009. Modeling and reasoning with Bayesian networks. Cambridge university press.
– reference: Ludger Rüschendorf. [n.d.]. Fréchet-bounds and their applications. In Advances in Probability Distributions with Given Marginals: beyond the copulas. Springer, 151–187.
– reference: Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An introduction to probabilistic programming. arXiv preprint arXiv:1809.10756.
– reference: Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling exact inference for discrete probabilistic programs. Proceedings of the ACM on Programming Languages, 4, OOPSLA (2020), 1–31. https://doi.org/doi/10.1145/3428208 /10.1145/3428208
– reference: Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective analysis: context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. 485–495. https://doi.org/doi/10.1145/2499370.2462179 /10.1145/2499370.2462179
– reference: Norbert Fuhr. 1995. Probabilistic datalog—a logic for powerful retrieval methods. In Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval. 282–290. https://doi.org/doi/10.1145/215206.215372 /10.1145/215206.215372
– ident: e_1_2_1_26_1
  doi: 10.1145/3559102
– ident: e_1_2_1_25_1
  doi: 10.7551/mitpress/7432.003.0007
– ident: e_1_2_1_51_1
– volume-title: Computer Aided Verification: 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28
  year: 2016
  ident: e_1_2_1_29_1
– ident: e_1_2_1_48_1
  doi: 10.7551/mitpress/4298.003.0069
– ident: e_1_2_1_1_1
  doi: 10.1145/3133904
– ident: e_1_2_1_38_1
  doi: 10.1145/2980983.2908096
– ident: e_1_2_1_42_1
  doi: 10.14778/1978665.1978669
– ident: e_1_2_1_30_1
  doi: 10.7551/mitpress/7432.003.0012
– ident: e_1_2_1_6_1
  doi: 10.1007/978-3-030-99524-9_24
– ident: e_1_2_1_40_1
  doi: 10.1145/1133981.1134018
– ident: e_1_2_1_36_1
  doi: 10.1145/3656448
– ident: e_1_2_1_41_1
  doi: 10.1007/978-3-319-29604-3_5
– ident: e_1_2_1_19_1
  doi: 10.1145/3586051
– volume-title: Advances in Probability Distributions with Given Marginals: beyond the copulas
  ident: e_1_2_1_45_1
– volume-title: Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.
  year: 2016
  ident: e_1_2_1_55_1
– volume: 18
  start-page: 1
  year: 2017
  ident: e_1_2_1_4_1
  article-title: Hinge-loss markov random fields and probabilistic soft logic
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_1_47_1
  doi: 10.1145/2491956.2462179
– ident: e_1_2_1_50_1
  doi: 10.1145/2594291.2594320
– ident: e_1_2_1_13_1
  doi: 10.1007/978-3-642-28869-2_9
– ident: e_1_2_1_21_1
  doi: 10.1145/215206.215372
– ident: e_1_2_1_7_1
  doi: 10.1145/2775051.2677000
– ident: e_1_2_1_34_1
  doi: 10.1145/2950290.2950291
– volume-title: BLOG: Probabilistic models with unknown objects.
  year: 2007
  ident: e_1_2_1_39_1
– ident: e_1_2_1_18_1
  doi: 10.1007/978-3-319-08867-9_8
– ident: e_1_2_1_31_1
  doi: 10.1145/3649844
– ident: e_1_2_1_59_1
  doi: 10.1145/3314221.3314619
– ident: e_1_2_1_32_1
– ident: e_1_2_1_24_1
  doi: 10.1007/978-3-319-41528-4_4
– volume-title: Modeling and reasoning with Bayesian networks
  ident: e_1_2_1_14_1
– ident: e_1_2_1_61_1
  doi: 10.1007/978-3-319-96142-2_12
– ident: e_1_2_1_56_1
  doi: 10.5281/zenodo.15760564
– ident: e_1_2_1_57_1
  doi: 10.1109/ICSE43902.2021.00079
– ident: e_1_2_1_22_1
  doi: 10.1007/978-3-642-31365-3_23
– ident: e_1_2_1_28_1
  doi: 10.1145/3428208
– volume: 41
  start-page: 159
  year: 2007
  ident: e_1_2_1_10_1
  article-title: The gurobi optimizer
  publication-title: Transp. Re-search Part B
– ident: e_1_2_1_11_1
  doi: 10.1145/1640089.1640108
– ident: e_1_2_1_60_1
  doi: 10.1007/11575467_8
– ident: e_1_2_1_63_1
  doi: 10.1145/2594291.2594327
– ident: e_1_2_1_5_1
  doi: 10.1145/3132700
– ident: e_1_2_1_62_1
  doi: 10.1145/3133881
– ident: e_1_2_1_20_1
  doi: 10.1017/S1471068414000076
– ident: e_1_2_1_43_1
  doi: 10.1145/3192366.3192417
– volume-title: Proceedings of the ACM on Programming Languages, 2, POPL
  year: 2017
  ident: e_1_2_1_2_1
– ident: e_1_2_1_3_1
– ident: e_1_2_1_37_1
  doi: 10.1145/3591280
– volume-title: IJCAI 2007, Proceedings of the 20th international joint conference on artificial intelligence. 2462–2467
  year: 2007
  ident: e_1_2_1_16_1
– ident: e_1_2_1_35_1
  doi: 10.1145/3106237.3106243
– volume-title: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence. 2633–2639
  year: 2021
  ident: e_1_2_1_15_1
– ident: e_1_2_1_49_1
  doi: 10.18637/jss.v035.i03
– ident: e_1_2_1_53_1
  doi: 10.1007/978-3-540-27775-0_30
– ident: e_1_2_1_52_1
  doi: 10.1017/S1471068409003767
– ident: e_1_2_1_54_1
  doi: 10.1016/j.ijar.2016.06.009
– volume-title: Applications of Logic Databases
  ident: e_1_2_1_44_1
– ident: e_1_2_1_8_1
  doi: 10.1145/3519939.3523721
– volume-title: Probabilistic graphical models: principles and techniques
  ident: e_1_2_1_33_1
– ident: e_1_2_1_46_1
  doi: 10.1145/3453483.3454078
– volume-title: International conference on artificial intelligence and statistics. 1682–1690
  year: 2018
  ident: e_1_2_1_23_1
– volume: 20
  start-page: 1
  year: 2019
  ident: e_1_2_1_9_1
  article-title: Pyro: Deep universal probabilistic programming
  publication-title: Journal of machine learning research
– ident: e_1_2_1_12_1
  doi: 10.1109/TC.1986.1676819
– volume-title: Autoconj: recognizing and exploiting conjugacy without a domain-specific language. Advances in Neural Information Processing Systems, 31
  year: 2018
  ident: e_1_2_1_27_1
– ident: e_1_2_1_58_1
  doi: 10.1145/3338906.3338913
– ident: e_1_2_1_17_1
  doi: 10.1007/978-3-319-23461-8_37
SSID ssj0001934839
Score 2.3056705
Snippet Probabilistic extensions of logic programming languages, such as ProbLog, integrate logical reasoning with probabilistic inference to evaluate probabilities of...
SourceID crossref
acm
SourceType Index Database
Publisher
StartPage 220
SubjectTerms Constraint and logic programming
Mathematical optimization
Mathematics of computing
Probabilistic inference problems
Theory of computation
SubjectTermsDisplay Mathematics of computing -- Mathematical optimization
Mathematics of computing -- Probabilistic inference problems
Theory of computation -- Constraint and logic programming
Title Probabilistic Inference for Datalog with Correlated Inputs
URI https://dl.acm.org/doi/10.1145/3763058
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2475-1421
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001934839
  issn: 2475-1421
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLY62GGXbZRNgwHygWtEars43q3qhhjiR6RWKqchx3ZEpJJWXUFw2d--92InDYzDOKBKaRM7Pvhznr-8vvc9Qva5NsJYE0eJFSaC_bofZXnSi2SSs57lmYVPVWxCnp8nl5cq7XR-1bkwd1NZlsn9vZq_KtRwDcDG1NkXwN0MChfgN4AOR4Adjv8FfLqARxRDXlGBGZ7_WkgW4wm_e2eN974OsTDHVCPl_FnOb72kU01U02Zjq2I9BsMz_FshRHPdoH-h9nQ2pHwSXM8n0JrNVqZtqjHlXRe68uCMrqvyTauwAm_3Jq54KJ6ONLzWs7ZbglVyprFqLaQQ6l6ZMiYkdBA-F7q2u6q1vC4u0tHpgLUtKYtbmzLzspz_2nuB0hhoJGOvAP9EPDu0vCHrTPYVhvyd_Wn54BQXQBB9LjWOdRD6I1UxNy2q0uIc44_kfXhZoAMP8gbpuLJLPtSFOGiwy5vk2yPMaYM5BcxpwJwi5nSFOfWYfyLjox_j4XEUimJEGl61k8hmKhYyy7SNjYmlNRzoRi5FJpnFb3UoDlVP6J62iTXa9DMWc-Ych1Mw3vwzWStnpftCaC6Edi5XDjizcAZOLEr18Nxqx7kzW6QLk3A196onV2FqtgitJ6Vp8snt_brL9rM3fiXvVutkh6wtF7dul7w1d8vi92KvAuYvtw1SYA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Inference+for+Datalog+with+Correlated+Inputs&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Wang%2C+Jingbo&rft.au=Halalingaiah%2C+Shashin&rft.au=Chen%2C+Weiyi&rft.au=Wang%2C+Chao&rft.date=2025-10-09&rft.pub=ACM&rft.eissn=2475-1421&rft.volume=9&rft.issue=OOPSLA2&rft.spage=220&rft.epage=247&rft_id=info:doi/10.1145%2F3763058&rft.externalDocID=3763058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon