qblaze: An Efficient and Scalable Sparse Quantum Simulator
Classical simulation of quantum circuits is critical for the development of implementations of quantum algorithms: it does not require access to specialized hardware, facilitates debugging by allowing direct access to the quantum state, and is the only way to test on inputs that are too big for curr...
Uloženo v:
| Vydáno v: | Proceedings of ACM on programming languages Ročník 9; číslo OOPSLA2; s. 444 - 470 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY, USA
ACM
09.10.2025
|
| Témata: | |
| ISSN: | 2475-1421, 2475-1421 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Classical simulation of quantum circuits is critical for the development of implementations of quantum algorithms: it does not require access to specialized hardware, facilitates debugging by allowing direct access to the quantum state, and is the only way to test on inputs that are too big for current NISQ computers. Many quantum algorithms rely on invariants that result in sparsity in the state vector. A sparse state vector simulator only computes with non-zero amplitudes. For important classes of algorithms, this results in an asymptotic improvement in simulation time. While promising prior work has investigated ways to exploit sparsity, it is still unclear what is the best way to scale sparse simulation to modern multi-core architectures. In this work, we address this challenge and present qblaze, a highly optimized sparse state vector simulator based on (i) a compact sorted array representation, and (ii) new, easily parallelizable and highly-scalable algorithms for all quantum operations. Our extensive experimental evaluation shows that qblaze is often orders-of-magnitude more efficient than prior sparse state vector simulators even on a single thread, and also that qblaze scales well to a large number of CPU cores. Overall, our work enables testing quantum algorithms on input sizes that were previously out of reach. |
|---|---|
| AbstractList | Classical simulation of quantum circuits is critical for the development of implementations of quantum algorithms: it does not require access to specialized hardware, facilitates debugging by allowing direct access to the quantum state, and is the only way to test on inputs that are too big for current NISQ computers.
Many quantum algorithms rely on invariants that result in sparsity in the state vector. A sparse state vector simulator only computes with non-zero amplitudes. For important classes of algorithms, this results in an asymptotic improvement in simulation time. While promising prior work has investigated ways to exploit sparsity, it is still unclear what is the best way to scale sparse simulation to modern multi-core architectures.
In this work, we address this challenge and present qblaze, a highly optimized sparse state vector simulator based on (i) a compact sorted array representation, and (ii) new, easily parallelizable and highly-scalable algorithms for all quantum operations. Our extensive experimental evaluation shows that qblaze is often orders-of-magnitude more efficient than prior sparse state vector simulators even on a single thread, and also that qblaze scales well to a large number of CPU cores.
Overall, our work enables testing quantum algorithms on input sizes that were previously out of reach. Classical simulation of quantum circuits is critical for the development of implementations of quantum algorithms: it does not require access to specialized hardware, facilitates debugging by allowing direct access to the quantum state, and is the only way to test on inputs that are too big for current NISQ computers. Many quantum algorithms rely on invariants that result in sparsity in the state vector. A sparse state vector simulator only computes with non-zero amplitudes. For important classes of algorithms, this results in an asymptotic improvement in simulation time. While promising prior work has investigated ways to exploit sparsity, it is still unclear what is the best way to scale sparse simulation to modern multi-core architectures. In this work, we address this challenge and present qblaze, a highly optimized sparse state vector simulator based on (i) a compact sorted array representation, and (ii) new, easily parallelizable and highly-scalable algorithms for all quantum operations. Our extensive experimental evaluation shows that qblaze is often orders-of-magnitude more efficient than prior sparse state vector simulators even on a single thread, and also that qblaze scales well to a large number of CPU cores. Overall, our work enables testing quantum algorithms on input sizes that were previously out of reach. |
| ArticleNumber | 288 |
| Author | Dimitrov, Dimitar Gehr, Timon Vechev, Martin Udomsrirungruang, Thien Venev, Hristo |
| Author_xml | – sequence: 1 givenname: Hristo orcidid: 0009-0009-5394-4340 surname: Venev fullname: Venev, Hristo email: hristo.venev@insait.ai organization: INSAIT, Sofia University St. Kliment Ohridski, Sofia, Bulgaria – sequence: 2 givenname: Thien orcidid: 0009-0005-2320-9178 surname: Udomsrirungruang fullname: Udomsrirungruang, Thien email: thien.udomsrirungruang@keble.ox.ac.uk organization: University of Oxford, Oxford, United Kingdom, INSAIT, Sofia University St. Kliment Ohridski, Sofia, Bulgaria – sequence: 3 givenname: Dimitar orcidid: 0000-0001-9393-0925 surname: Dimitrov fullname: Dimitrov, Dimitar email: dimitar.dimitrov@insait.ai organization: INSAIT, Sofia University St. Kliment Ohridski, Sofia, Bulgaria – sequence: 4 givenname: Timon orcidid: 0009-0000-7470-0489 surname: Gehr fullname: Gehr, Timon email: timon.gehr@inf.ethz.ch organization: ETH Zurich, Zurich, Switzerland – sequence: 5 givenname: Martin orcidid: 0000-0002-0054-9568 surname: Vechev fullname: Vechev, Martin email: martin.vechev@inf.ethz.ch organization: ETH Zurich, Zurich, Switzerland, INSAIT, Sofia University St. Kliment Ohridski, Sofia, Bulgaria |
| BookMark | eNpNj8FLwzAYxYNMcM7h3VNunqr5mjRNdhtjU2EgUj2XJP0ClTabSXvQv97Jpnh6D96Px3uXZBJ2AQm5BnYHIIp7XkrOpDwj01yURQYih8k_f0HmKb0zxkBzobieksWH7cwXLugy0LX3rWsxDNSEhlbOdMZ2SKu9iQnpy2jCMPa0avuxM8MuXpFzb7qE85POyNtm_bp6zLbPD0-r5TYzUEiZlaAdk40Aq6DJeSM5Qmm55CDRSRTeKpQlovYWVcGUUI7lGnNdcHvYCHxGbo-9Lu5SiujrfWx7Ez9rYPXP6_r0-kDeHEnj-j_oN_wGa3tREw |
| Cites_doi | 10.22331/q-2020-01-13-221 10.1145/3491248 10.1109/ICCAD45719.2019.8942057 10.1103/PhysRevA.74.022320 10.1090/s0002-9904-1910-01892-9 10.5281/zenodo.16925511 10.1109/TCAD.2022.3182628 10.22331/q-2021-03-15-410 10.1126/science.273.5278.1073 10.1145/3550488 10.1038/srep03023 10.22331/q-2020-01-13-220 10.1073/pnas.0808245105 10.48550/arXiv.cond-mat/0407066 10.1038/s41567-019-0648-8 10.1038/s43588-021-00024-z 10.1103/PhysRevX.14.011009 10.1038/s41567-024-02411-5 10.1021/acs.chemrev.8b00803 10.1016/j.tcs.2014.05.025 10.1103/PhysRevA.57.127 10.1093/ietfec/e91-a.2.584 10.1137/050644756 10.1103/PhysRevLett.95.050501 10.22331/q-2023-09-11-1108 10.1007/s00220-006-0150-x 10.48550/arXiv.1408.3106 10.1103/PhysRevLett.131.180601 10.1103/PhysRevLett.113.130503 10.48550/arXiv.1307.0411 10.1126/science.aad9480 10.1103/PhysRevLett.103.150502 10.1109/TCAD.2018.2834427 10.1007/11672142_13 10.1103/PhysRevA.100.012305 10.1103/PhysRevLett.91.147902 10.1103/PhysRevA.54.1034 10.1007/978-3-642-38986-3_11 10.1109/MC.2022.3217021 10.5281/zenodo.16929865 10.1145/3547334 10.1145/3651157 10.1103/PhysRevLett.83.5162 10.1103/PhysRevA.70.052328 10.1145/3385412.3386007 10.1038/s43588-021-00119-7 10.1007/978-3-540-88702-7_1 10.1038/s41592-020-01004-3 10.1021/acs.jctc.2c00574 10.1109/DATE.2006.244176 10.1145/2491956.2462177 10.1002/wcms.1481 10.1109/ISMVL.2006.35 10.2172/366453 10.1023/B:QINP.0000022725.70000.4a 10.1103/PhysRevLett.96.170503 10.1145/237814.237866 10.1145/3009837.3009894 10.1137/s0097539795293172 10.1038/nature12290 10.1145/3689760 10.1109/TQE.2024.3364546 10.1109/QCE60285.2024.00132 |
| ContentType | Journal Article |
| Copyright | Owner/Author |
| Copyright_xml | – notice: Owner/Author |
| DBID | AAYXX CITATION |
| DOI | 10.1145/3763066 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2475-1421 |
| EndPage | 470 |
| ExternalDocumentID | 10_1145_3763066 3763066 |
| GrantInformation_xml | – fundername: SNSF grantid: 207967 |
| GroupedDBID | AAKMM AAYFX ACM AEFXT AEJOY AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS GUFHI LHSKQ M~E OK1 ROL AAYXX CITATION |
| ID | FETCH-LOGICAL-a1566-719c06d41b81d23d63e17b36316ec6e4fb8e67ee9fbe850848c029e2953b48313 |
| ISSN | 2475-1421 |
| IngestDate | Thu Oct 16 04:28:21 EDT 2025 Mon Oct 13 16:30:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | OOPSLA2 |
| Keywords | quantum circuit simulation parallel algorithms sparse state vector |
| Language | English |
| License | This work is licensed under Creative Commons Attribution International 4.0. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a1566-719c06d41b81d23d63e17b36316ec6e4fb8e67ee9fbe850848c029e2953b48313 |
| ORCID | 0009-0005-2320-9178 0000-0002-0054-9568 0009-0009-5394-4340 0009-0000-7470-0489 0000-0001-9393-0925 |
| OpenAccessLink | https://dl.acm.org/doi/10.1145/3763066 |
| PageCount | 27 |
| ParticipantIDs | crossref_primary_10_1145_3763066 acm_primary_3763066 |
| PublicationCentury | 2000 |
| PublicationDate | 20251009 2025-10-09 |
| PublicationDateYYYYMMDD | 2025-10-09 |
| PublicationDate_xml | – month: 10 year: 2025 text: 20251009 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | New York, NY, USA |
| PublicationPlace_xml | – name: New York, NY, USA |
| PublicationTitle | Proceedings of ACM on programming languages |
| PublicationTitleAbbrev | ACM PACMPL |
| PublicationYear | 2025 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| References | Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2022. Introduction to algorithms (4 ed.). The MIT Press. isbn:978-0-262-04630-5 Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. 2023. QASMBench: A low-level quantum benchmark suite for nisq evaluation and simulation. ACM Transactions on Quantum Computing, 4, 2 (2023), Article 10, feb, 26 pages. https://doi.org/10.1145/3550488 10.1145/3550488 Alwin Zulehner and Robert Wille. 2019. Advanced simulation of quantum computations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38, 5 (2019), May, 848–859. issn:1937-4151 https://doi.org/10.1109/TCAD.2018.2834427 Conference Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10.1109/TCAD.2018.2834427 A. K. Fedorov and M. S. Gelfand. 2021. Towards practical applications in quantum computational biology. Nature Computational Science, 1, 2 (2021), Feb., 114–119. issn:2662-8457 https://doi.org/10.1038/s43588-021-00024-z 10.1038/s43588-021-00024-z Thomas Häner, Martin Roetteler, and Krysta M. Svore. 2017. Factoring using 2n+2 qubits with Toffoli based modular multiplication. arxiv:1611.07995. arxiv:1611.07995 Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: a core language for quantum circuits. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL ’17). Association for Computing Machinery, New York, NY, USA. 846–858. isbn:978-1-4503-4660-3 https://doi.org/10.1145/3009837.3009894 10.1145/3009837.3009894 Maarten Van Den Nes. 2010. Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond. 10, 3 (2010), 258–271. issn:1533-7146 A. Abdollahi and M. Pedram. 2006. Analysis and Synthesis of Quantum Circuits by Using Quantum Decision Diagrams. In Proceedings of the Design Automation & Test in Europe Conference. 1, 1–6. https://doi.org/10.1109/DATE.2006.244176 ISSN: 1558-1101 10.1109/DATE.2006.244176 Carlos Outeiral, Martin Strahm, Jiye Shi, Garrett M. Morris, Simon C. Benjamin, and Charlotte M. Deane. 2021. The prospects of quantum computing in computational molecular biology. WIREs Computational Molecular Science, 11, 1 (2021), e1481. issn:1759-0884 arxiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1481. https://doi.org/10.1002/wcms.1481 10.1002/wcms.1481 Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. 2020. Convex optimization using quantum oracles. Quantum, 4 (2020), Jan., 220. https://doi.org/10.22331/q-2020-01-13-220 10.22331/q-2020-01-13-220 Thomas Monz, Daniel Nigg, Esteban A. Martinez, Matthias F. Brandl, Philipp Schindler, Richard Rines, Shannon X. Wang, Isaac L. Chuang, and Rainer Blatt. 2016. Realization of a scalable Shor algorithm. Science, 351, 6277 (2016), March, 1068–1070. https://doi.org/10.1126/science.aad9480 10.1126/science.aad9480 Michael R. Geller and Zhongyuan Zhou. 2013. Factoring 51 and 85 with 8 qubits. Scientific Reports, 3, 1 (2013), Oct., 3023. issn:2045-2322 https://doi.org/10.1038/srep03023 10.1038/srep03023 Daniel S. Abrams and Seth Lloyd. 1999. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Physical Review Letters, 83, 24 (1999), Dec., 5162–5165. https://doi.org/10.1103/PhysRevLett.83.5162 10.1103/PhysRevLett.83.5162 David Greve. 1999. QDD: A quantum computer emulation library. https://web.archive.org/web/20021210200357/http://home.plutonium.net/~dagreve/qdd.html Ivan Kassal, Stephen P. Jordan, Peter J. Love, Masoud Mohseni, and Alán Aspuru-Guzik. 2008. Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proceedings of the National Academy of Sciences, 105, 48 (2008), Dec., 18681–18686. https://doi.org/10.1073/pnas.0808245105 10.1073/pnas.0808245105 John A. Smolin, Graeme Smith, and Alexander Vargo. 2013. Oversimplifying quantum factoring. Nature, 499, 7457 (2013), July, 163–165. issn:1476-4687 https://doi.org/10.1038/nature12290 10.1038/nature12290 Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum algorithms for supervised and unsupervised machine learning. arxiv:arXiv:1307.0411 [quant-ph]. https://doi.org/10.48550/arXiv.1307.0411 10.48550/arXiv.1307.0411 Y.-Y. Shi, L.-M. Duan, and G. Vidal. 2006. Classical simulation of quantum many-body systems with a tree tensor network. Physical Review A, 74, 2 (2006), Aug., 022320. https://doi.org/10.1103/PhysRevA.74.022320 10.1103/PhysRevA.74.022320 David Goodman, Mitchell A Thornton, David Y Feinstein, and D Michael Miller. 2007. Quantum logic circuit simulation based on the QMDD data structure. In International Reed-Muller Workshop. Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. 2007. Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics, 270, 2 (2007), March, 359–371. issn:1432-0916 https://doi.org/10.1007/s00220-006-0150-x 10.1007/s00220-006-0150-x Shaowen Li, Yusuke Kimura, Hiroyuki Sato, and Masahiro Fujita. 2024. Parallelizing quantum simulation with decision diagrams. 5 (2024), 1–12. issn:2689-1808 https://doi.org/10.1109/TQE.2024.3364546 Conference Name: IEEE Transactions on Quantum Engineering 10.1109/TQE.2024.3364546 Raffaele Santagati, Alan Aspuru-Guzik, Ryan Babbush, Matthias Degroote, Leticia González, Elica Kyoseva, Nikolaj Moll, Markus Oppel, Robert M. Parrish, Nicholas C. Rubin, Michael Streif, Christofer S. Tautermann, Horst Weiss, Nathan Wiebe, and Clemens Utschig-Utschig. 2024. Drug design on quantum computers. Nature Physics, 20, 4 (2024), April, 549–557. issn:1745-2481 https://doi.org/10.1038/s41567-024-02411-5 10.1038/s41567-024-02411-5 Seth Lloyd. 1996. Universal quantum simulators. Science, 273, 5278 (1996), Aug., 1073–1078. https://doi.org/10.1126/science.273.5278.1073 10.1126/science.273.5278.1073 Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, and Xiaodi Wu. 2020. Quantum algorithms and lower bounds for convex optimization. Quantum, 4 (2020), Jan., 221. https://doi.org/10.22331/q-2020-01-13-221 10.22331/q-2020-01-13-221 Hristo Venev, Thien Udomsrirungruang, Dimitar Dimitrov, Timon Gehr, and Martin Vechev. 2025. Artifact for "qblaze: An Efficient and Scalable Sparse Quantum Simulator". https://doi.org/10.5281/zenodo.16925511 10.5281/zenodo.16925511 Shiou-An Wang, Chin-Yung Lu, I-Ming Tsai, and Sy-Yen Kuo. 2008. An XQDD-Based Verification Method for Quantum Circuits. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E91.A, 2 (2008), 584–594. issn:0916-8508 https://doi.org/10.1093/ietfec/e91-a.2.584 10.1093/ietfec/e91-a.2.584 Gregory T. Byrd and Yongshan Ding. 2023. Quantum computing: Progress and innovation. Computer, 56, 1 (2023), Jan., 20–29. issn:1558-0814 https://doi.org/10.1109/MC.2022.3217021 10.1109/MC.2022.3217021 Hristo Venev, Thien Udomsrirungruang, Dimitar Dimitrov, Timon Gehr, and Martin Vechev. 2025. Artifact for "qblaze: An Efficient and Scalable Sparse Quantum Simulator". https://doi.org/10.5281/zenodo.16929865 10.5281/zenodo.16929865 Lieuwe Vinkhuijzen, Tim Coopmans, David Elkouss, Vedran Dunjko, and Alfons Laarman. 2023. LIMDD: A decision diagram for simulation of quantum computing including stabilizer states. Quantum, 7 (2023), Sept., 1108. https://doi.org/10.22331/q-2023-09-11-1108 10.22331/q-2023-09-11-1108 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: a scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). Association for Computing Machinery, New York, NY, USA. 333–342. isbn:978-1-4503-2014-6 https://doi.org/10.1145/2491956.2462177 10.1145/2491956.2462177 Nick S. Blunt, Joan Camps, Ophelia Crawford, Róbert Izsák, Sebastian Leontica, Arjun Mirani, Alexandra E. Moylett, Sam A. Scivier, Christoph Sünderhauf, Patrick Schopf, Jacob M. Taylor, and Nicole Holzmann. 2022. Perspective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications. Journal of Chemical Theory and Computation, 18, 12 (2022), Dec., 7001–7023. issn:1549-9618 https://doi.org/10.1021/acs.jctc.2c00574 10.1021/acs.jctc.2c00574 F. Verstraete and J. I. Cirac. 2004. Renormalization algorithms for quantum-many body systems in two and higher dimensions. https://doi.org/10.48550/arXiv.cond-mat/0407066 arXiv:cond-mat/0407066 10.48550/arXiv.cond-mat/0407066 Microsoft. 2020. Q# Language Specification. https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language##q-language Thomas G. Draper. 2000. Addition on a quantum computer. arxiv:quant-ph/0008033. Samuel Jaques and Thomas Häner. 2022. Leveraging state sparsity for more efficient quantum simulations. ACM Transactions on Quantum Computing, 3, 3 (2022), June, 15:1–15:17. https://doi.org/10.1145/3491248 10.1145/3491248 Meghana Sistla, Swarat Chaudhuri, and Thomas Reps. 2024. Weighted context-free-language ordered binary decision diagrams. Weighted CFLOBDDs, 8, OOPSLA2 (2024), Oct., 320:1390–320:1419. https://doi.org/10.1145/3689760 10.1145/3689760 Guifré Vidal. 2003. Efficient classical simulation of slightly entangled quantum computations. 91, 14 (2003), 147902. https://doi.org/10.1103/PhysRevLett.91.147902 10.1103/PhysRevLett.91.147902 Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search. arxiv:quant-ph/9605043. E Knill. 1996. Conventions for quantum pseudocode. https://doi.org/10.2172/366453 10.2172/366453 Prashant S. Emani, Jonathan Warrell, Alan Anticevic, Stefan Bekiranov, Michael Gandal, Michael J. McConnell, Guillermo Sapiro, Alán Aspuru-Guzik, Justin T. Baker, Matteo Bastiani, John D. Murray, Stamatios N. Sotiropoulos, Jacob Taylor, Geetha Senthil, Thomas Lehner, Mark B. Gerstein, and Aram W. Harrow. 2021. Quantum computing at the frontiers of biological sciences. Nature Methods, 18, 7 (2021), July, 701–709. issn:1548-7105 https://doi.org/10.1038/s41592-020-01004-3 10.1038/s41592-020-01004- e_1_2_1_60_1 e_1_2_1_41_1 e_1_2_1_66_1 e_1_2_1_68_1 Beauregard Stephane (e_1_2_1_8_1) 2003 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_62_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_64_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_47_1 e_1_2_1_71_1 Cormen Thomas H. (e_1_2_1_20_1) e_1_2_1_54_1 e_1_2_1_56_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_73_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_58_1 e_1_2_1_18_1 Goodman David (e_1_2_1_26_1) 2007 e_1_2_1_42_1 e_1_2_1_65_1 e_1_2_1_40_1 e_1_2_1_67_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_63_1 Greve David (e_1_2_1_31_1) 1999 e_1_2_1_27_1 Häner Thomas (e_1_2_1_35_1) 2017 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_69_1 e_1_2_1_29_1 Nielsen Michael A. (e_1_2_1_50_1) 2010 e_1_2_1_70_1 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_55_1 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_72_1 e_1_2_1_1_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 Den Nes Maarten Van (e_1_2_1_61_1) 2010 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
| References_xml | – reference: Daniel J. Bernstein. 2009. Introduction to post-quantum cryptography. In Post-quantum cryptography, Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen (Eds.). Springer, 1–14. isbn:978-3-540-88702-7 https://doi.org/10.1007/978-3-540-88702-7_1 10.1007/978-3-540-88702-7_1 – reference: Shiou-An Wang, Chin-Yung Lu, I-Ming Tsai, and Sy-Yen Kuo. 2008. An XQDD-Based Verification Method for Quantum Circuits. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E91.A, 2 (2008), 584–594. issn:0916-8508 https://doi.org/10.1093/ietfec/e91-a.2.584 10.1093/ietfec/e91-a.2.584 – reference: Hristo Venev, Thien Udomsrirungruang, Dimitar Dimitrov, Timon Gehr, and Martin Vechev. 2025. Artifact for "qblaze: An Efficient and Scalable Sparse Quantum Simulator". https://doi.org/10.5281/zenodo.16925511 10.5281/zenodo.16925511 – reference: Carlos Outeiral, Martin Strahm, Jiye Shi, Garrett M. Morris, Simon C. Benjamin, and Charlotte M. Deane. 2021. The prospects of quantum computing in computational molecular biology. WIREs Computational Molecular Science, 11, 1 (2021), e1481. issn:1759-0884 arxiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1481. https://doi.org/10.1002/wcms.1481 10.1002/wcms.1481 – reference: Ivan Kassal, Stephen P. Jordan, Peter J. Love, Masoud Mohseni, and Alán Aspuru-Guzik. 2008. Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proceedings of the National Academy of Sciences, 105, 48 (2008), Dec., 18681–18686. https://doi.org/10.1073/pnas.0808245105 10.1073/pnas.0808245105 – reference: Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, and Xiaodi Wu. 2020. Quantum algorithms and lower bounds for convex optimization. Quantum, 4 (2020), Jan., 221. https://doi.org/10.22331/q-2020-01-13-221 10.22331/q-2020-01-13-221 – reference: Samuel Jaques and Thomas Häner. 2022. Leveraging state sparsity for more efficient quantum simulations. ACM Transactions on Quantum Computing, 3, 3 (2022), June, 15:1–15:17. https://doi.org/10.1145/3491248 10.1145/3491248 – reference: Gregory T. Byrd and Yongshan Ding. 2023. Quantum computing: Progress and innovation. Computer, 56, 1 (2023), Jan., 20–29. issn:1558-0814 https://doi.org/10.1109/MC.2022.3217021 10.1109/MC.2022.3217021 – reference: Andris Ambainis and Robert Špalek. 2006. Quantum algorithms for matching and network flows. In STACS 2006, Bruno Durand and Wolfgang Thomas (Eds.). Springer, Berlin, Heidelberg. 172–183. isbn:978-3-540-32288-7 https://doi.org/10.1007/11672142_13 10.1007/11672142_13 – reference: Igor L. Markov and Yaoyun Shi. 2008. Simulating Quantum Computation by Contracting Tensor Networks. SIAM J. Comput., 38, 3 (2008), Jan., 963–981. issn:0097-5397 https://doi.org/10.1137/050644756 10.1137/050644756 – reference: David Goodman, Mitchell A Thornton, David Y Feinstein, and D Michael Miller. 2007. Quantum logic circuit simulation based on the QMDD data structure. In International Reed-Muller Workshop. – reference: Stephen P. Jordan. 2005. Fast quantum algorithm for numerical gradient estimation. Physical Review Letters, 95, 5 (2005), July, 050501. https://doi.org/10.1103/PhysRevLett.95.050501 10.1103/PhysRevLett.95.050501 – reference: Hristo Venev, Thien Udomsrirungruang, Dimitar Dimitrov, Timon Gehr, and Martin Vechev. 2025. Artifact for "qblaze: An Efficient and Scalable Sparse Quantum Simulator". https://doi.org/10.5281/zenodo.16929865 10.5281/zenodo.16929865 – reference: Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mária Kieferová, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. 2019. Quantum chemistry in the age of quantum computing. Chemical Reviews, 119, 19 (2019), Oct., 10856–10915. issn:0009-2665 https://doi.org/10.1021/acs.chemrev.8b00803 10.1021/acs.chemrev.8b00803 – reference: E Knill. 1996. Conventions for quantum pseudocode. https://doi.org/10.2172/366453 10.2172/366453 – reference: Stephane Beauregard. 2003. Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Info. Comput., 3, 2 (2003), mar, 175–185. issn:1533-7146 – reference: David Beckman, Amalavoyal N. Chari, Srikrishna Devabhaktuni, and John Preskill. 1996. Efficient networks for quantum factoring. Physical Review A, 54, 2 (1996), Aug., 1034–1063. https://doi.org/10.1103/PhysRevA.54.1034 10.1103/PhysRevA.54.1034 – reference: Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A high-level quantum language with safe uncomputation and intuitive semantics. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, London UK. 286–300. isbn:978-1-4503-7613-6 https://doi.org/10.1145/3385412.3386007 10.1145/3385412.3386007 – reference: Thomas Monz, Daniel Nigg, Esteban A. Martinez, Matthias F. Brandl, Philipp Schindler, Richard Rines, Shannon X. Wang, Isaac L. Chuang, and Rainer Blatt. 2016. Realization of a scalable Shor algorithm. Science, 351, 6277 (2016), March, 1068–1070. https://doi.org/10.1126/science.aad9480 10.1126/science.aad9480 – reference: John A. Smolin, Graeme Smith, and Alexander Vargo. 2013. Oversimplifying quantum factoring. Nature, 499, 7457 (2013), July, 163–165. issn:1476-4687 https://doi.org/10.1038/nature12290 10.1038/nature12290 – reference: Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: a scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). Association for Computing Machinery, New York, NY, USA. 333–342. isbn:978-1-4503-2014-6 https://doi.org/10.1145/2491956.2462177 10.1145/2491956.2462177 – reference: A. Abdollahi and M. Pedram. 2006. Analysis and Synthesis of Quantum Circuits by Using Quantum Decision Diagrams. In Proceedings of the Design Automation & Test in Europe Conference. 1, 1–6. https://doi.org/10.1109/DATE.2006.244176 ISSN: 1558-1101 10.1109/DATE.2006.244176 – reference: 2021. Efficient parallelization of tensor network contraction for simulating quantum computation. 1, 9 (2021), 578–587. issn:2662-8457 https://doi.org/10.1038/s43588-021-00119-7 Publisher: Nature Publishing Group 10.1038/s43588-021-00119-7 – reference: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2022. Introduction to algorithms (4 ed.). The MIT Press. isbn:978-0-262-04630-5 – reference: Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: a core language for quantum circuits. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL ’17). Association for Computing Machinery, New York, NY, USA. 846–858. isbn:978-1-4503-4660-3 https://doi.org/10.1145/3009837.3009894 10.1145/3009837.3009894 – reference: Charles H. Bennett and Gilles Brassard. 2014. Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560 (2014), 7–11. issn:0304-3975 https://doi.org/10.1016/j.tcs.2014.05.025 Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84 10.1016/j.tcs.2014.05.025 – reference: Nick S. Blunt, Joan Camps, Ophelia Crawford, Róbert Izsák, Sebastian Leontica, Arjun Mirani, Alexandra E. Moylett, Sam A. Scivier, Christoph Sünderhauf, Patrick Schopf, Jacob M. Taylor, and Nicole Holzmann. 2022. Perspective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications. Journal of Chemical Theory and Computation, 18, 12 (2022), Dec., 7001–7023. issn:1549-9618 https://doi.org/10.1021/acs.jctc.2c00574 10.1021/acs.jctc.2c00574 – reference: Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press. isbn:978-1-139-49548-6 – reference: Alwin Zulehner and Robert Wille. 2019. Advanced simulation of quantum computations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38, 5 (2019), May, 848–859. issn:1937-4151 https://doi.org/10.1109/TCAD.2018.2834427 Conference Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10.1109/TCAD.2018.2834427 – reference: Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. 2014. Quantum support vector machine for big data classification. Physical Review Letters, 113, 13 (2014), Sept., 130503. https://doi.org/10.1103/PhysRevLett.113.130503 10.1103/PhysRevLett.113.130503 – reference: George F. Viamontes, Igor L. Markov, and John P. Hayes. 2003. Improving gate-level simulation of quantum circuits. Quantum Information Processing, 2, 5 (2003), Oct., 347–380. issn:1573-1332 https://doi.org/10.1023/B:QINP.0000022725.70000.4a 10.1023/B:QINP.0000022725.70000.4a – reference: Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. 2020. Convex optimization using quantum oracles. Quantum, 4 (2020), Jan., 220. https://doi.org/10.22331/q-2020-01-13-220 10.22331/q-2020-01-13-220 – reference: Johnnie Gray and Stefanos Kourtis. 2021. Hyper-optimized tensor network contraction. 5 (2021), 410. https://doi.org/10.22331/q-2021-03-15-410 10.22331/q-2021-03-15-410 – reference: David Greve. 1999. QDD: A quantum computer emulation library. https://web.archive.org/web/20021210200357/http://home.plutonium.net/~dagreve/qdd.html – reference: Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum algorithms for supervised and unsupervised machine learning. arxiv:arXiv:1307.0411 [quant-ph]. https://doi.org/10.48550/arXiv.1307.0411 10.48550/arXiv.1307.0411 – reference: Y.-Y. Shi, L.-M. Duan, and G. Vidal. 2006. Classical simulation of quantum many-body systems with a tree tensor network. Physical Review A, 74, 2 (2006), Aug., 022320. https://doi.org/10.1103/PhysRevA.74.022320 10.1103/PhysRevA.74.022320 – reference: A. K. Fedorov and M. S. Gelfand. 2021. Towards practical applications in quantum computational biology. Nature Computational Science, 1, 2 (2021), Feb., 114–119. issn:2662-8457 https://doi.org/10.1038/s43588-021-00024-z 10.1038/s43588-021-00024-z – reference: Raffaele Santagati, Alan Aspuru-Guzik, Ryan Babbush, Matthias Degroote, Leticia González, Elica Kyoseva, Nikolaj Moll, Markus Oppel, Robert M. Parrish, Nicholas C. Rubin, Michael Streif, Christofer S. Tautermann, Horst Weiss, Nathan Wiebe, and Clemens Utschig-Utschig. 2024. Drug design on quantum computers. Nature Physics, 20, 4 (2024), April, 549–557. issn:1745-2481 https://doi.org/10.1038/s41567-024-02411-5 10.1038/s41567-024-02411-5 – reference: Guifré Vidal. 2003. Efficient classical simulation of slightly entangled quantum computations. 91, 14 (2003), 147902. https://doi.org/10.1103/PhysRevLett.91.147902 10.1103/PhysRevLett.91.147902 – reference: Meghana Sistla, Swarat Chaudhuri, and Thomas Reps. 2024. Weighted context-free-language ordered binary decision diagrams. Weighted CFLOBDDs, 8, OOPSLA2 (2024), Oct., 320:1390–320:1419. https://doi.org/10.1145/3689760 10.1145/3689760 – reference: F. Verstraete and J. I. Cirac. 2004. Renormalization algorithms for quantum-many body systems in two and higher dimensions. https://doi.org/10.48550/arXiv.cond-mat/0407066 arXiv:cond-mat/0407066 10.48550/arXiv.cond-mat/0407066 – reference: Thomas Grurl, Jürgen Fuß, and Robert Wille. 2023. Noise-aware quantum circuit simulation with decision diagrams. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42, 3 (2023), 860–873. https://doi.org/10.1109/TCAD.2022.3182628 10.1109/TCAD.2022.3182628 – reference: Mirko Amico, Zain H. Saleem, and Muir Kumph. 2019. Experimental study of Shor’s factoring algorithm using the IBM Q Experience. Physical Review A, 100, 1 (2019), July, 012305. https://doi.org/10.1103/PhysRevA.100.012305 10.1103/PhysRevA.100.012305 – reference: Seth Lloyd. 1996. Universal quantum simulators. Science, 273, 5278 (1996), Aug., 1073–1078. https://doi.org/10.1126/science.273.5278.1073 10.1126/science.273.5278.1073 – reference: Microsoft. 2020. Q# Language Specification. https://github.com/microsoft/qsharp-language/tree/main/Specifications/Language##q-language – reference: Thorsten B. Wahl and Sergii Strelchuk. 2023. Simulating quantum circuits using efficient tensor network contraction algorithms with subexponential upper bound. 131, 18 (2023), 180601. https://doi.org/10.1103/PhysRevLett.131.180601 10.1103/PhysRevLett.131.180601 – reference: D.M. Miller and M.A. Thornton. 2006. QMDD: A decision diagram structure for reversible and quantum circuits. In 36th International Symposium on Multiple-Valued Logic (ISMVL’06). 30–30. https://doi.org/10.1109/ISMVL.2006.35 ISSN: 2378-2226 10.1109/ISMVL.2006.35 – reference: Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David Petrie Moulton. 2004. A new quantum ripple-carry addition circuit. arxiv:quant-ph/0410184. – reference: Sam Westrick, Pengyu Liu, Byeongjee Kang, Colin McDonald, Mike Rainey, Mingkuan Xu, Jatin Arora, Yongshan Ding, and Umut A. Acar. 2024. GraFeyn: Efficient Parallel Sparse Simulation of Quantum Circuits. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE). 01, 1132–1142. https://doi.org/10.1109/QCE60285.2024.00132 10.1109/QCE60285.2024.00132 – reference: Scott Aaronson and Daniel Gottesman. 2004. Improved simulation of stabilizer circuits. Physical Review A, 70, 5 (2004), Nov., 052328. https://doi.org/10.1103/PhysRevA.70.052328 10.1103/PhysRevA.70.052328 – reference: Lieuwe Vinkhuijzen, Tim Coopmans, David Elkouss, Vedran Dunjko, and Alfons Laarman. 2023. LIMDD: A decision diagram for simulation of quantum computing including stabilizer states. Quantum, 7 (2023), Sept., 1108. https://doi.org/10.22331/q-2023-09-11-1108 10.22331/q-2023-09-11-1108 – reference: Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search. arxiv:quant-ph/9605043. – reference: R. D. Carmichael. 1910. Note on a new number theory function. Bull. Amer. Math. Soc., 16, 5 (1910), 232–238. issn:1088-9485 https://doi.org/10.1090/s0002-9904-1910-01892-9 10.1090/s0002-9904-1910-01892-9 – reference: Thomas G. Draper. 2000. Addition on a quantum computer. arxiv:quant-ph/0008033. – reference: Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm for linear systems of equations. Physical Review Letters, 103, 15 (2009), Oct., 150502. https://doi.org/10.1103/PhysRevLett.103.150502 10.1103/PhysRevLett.103.150502 – reference: Maarten Van Den Nes. 2010. Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond. 10, 3 (2010), 258–271. issn:1533-7146 – reference: Shaowen Li, Yusuke Kimura, Hiroyuki Sato, and Masahiro Fujita. 2024. Parallelizing quantum simulation with decision diagrams. 5 (2024), 1–12. issn:2689-1808 https://doi.org/10.1109/TQE.2024.3364546 Conference Name: IEEE Transactions on Quantum Engineering 10.1109/TQE.2024.3364546 – reference: Philipp Niemann, Robert Wille, and Rolf Drechsler. 2013. On the “Q” in QMDDs: Efficient representation of quantum functionality in the QMDD data-structure. In Reversible Computation, Gerhard W. Dueck and D. Michael Miller (Eds.). Springer, Berlin, Heidelberg. 125–140. isbn:978-3-642-38986-3 https://doi.org/10.1007/978-3-642-38986-3_11 10.1007/978-3-642-38986-3_11 – reference: Alwin Zulehner, Stefan Hillmich, and Robert Wille. 2019. How to efficiently handle complex values? Implementing decision diagrams for quantum computing. In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–7. https://doi.org/10.1109/ICCAD45719.2019.8942057 ISSN: 1558-2434 10.1109/ICCAD45719.2019.8942057 – reference: Thien Nguyen, Dmitry Lyakh, Eugene Dumitrescu, David Clark, Jeff Larkin, and Alexander McCaskey. 2022. Tensor network quantum virtual machine for simulating quantum circuits at exascale. 4, 1 (2022), 6:1–6:21. https://doi.org/10.1145/3547334 10.1145/3547334 – reference: Prashant S. Emani, Jonathan Warrell, Alan Anticevic, Stefan Bekiranov, Michael Gandal, Michael J. McConnell, Guillermo Sapiro, Alán Aspuru-Guzik, Justin T. Baker, Matteo Bastiani, John D. Murray, Stamatios N. Sotiropoulos, Jacob Taylor, Geetha Senthil, Thomas Lehner, Mark B. Gerstein, and Aram W. Harrow. 2021. Quantum computing at the frontiers of biological sciences. Nature Methods, 18, 7 (2021), July, 701–709. issn:1548-7105 https://doi.org/10.1038/s41592-020-01004-3 10.1038/s41592-020-01004-3 – reference: Daniel S. Abrams and Seth Lloyd. 1999. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Physical Review Letters, 83, 24 (1999), Dec., 5162–5165. https://doi.org/10.1103/PhysRevLett.83.5162 10.1103/PhysRevLett.83.5162 – reference: Seth Lloyd, Silvano Garnerone, and Paolo Zanardi. 2015. Quantum algorithms for topological and geometric analysis of big data. arxiv:arXiv:1408.3106 [quant-ph]. https://doi.org/10.48550/arXiv.1408.3106 10.48550/arXiv.1408.3106 – reference: Peter W. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26, 5 (1997), Oct., 1484–1509. issn:1095-7111 https://doi.org/10.1137/s0097539795293172 10.1137/s0097539795293172 – reference: Meghana Aparna Sistla, Swarat Chaudhuri, and Thomas Reps. 2024. CFLOBDDs: ContextfFree-language ordered binary decision diagrams. ACM Trans. Program. Lang. Syst., 46, 2 (2024), May, 7:1–7:82. issn:0164-0925 https://doi.org/10.1145/3651157 10.1145/3651157 – reference: Nadav Yoran and Anthony J. Short. 2006. Classical Simulation of Limited-Width Cluster-State Quantum Computation. Physical Review Letters, 96, 17 (2006), May, 170503. https://doi.org/10.1103/PhysRevLett.96.170503 10.1103/PhysRevLett.96.170503 – reference: Thomas Häner, Martin Roetteler, and Krysta M. Svore. 2017. Factoring using 2n+2 qubits with Toffoli based modular multiplication. arxiv:1611.07995. arxiv:1611.07995 – reference: Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. 2023. QASMBench: A low-level quantum benchmark suite for nisq evaluation and simulation. ACM Transactions on Quantum Computing, 4, 2 (2023), Article 10, feb, 26 pages. https://doi.org/10.1145/3550488 10.1145/3550488 – reference: Johnnie Gray and Garnet Kin-Lic Chan. 2024. Hyperoptimized approximate contraction of tensor networks with arbitrary geometry. 14, 1 (2024), 011009. https://doi.org/10.1103/PhysRevX.14.011009 10.1103/PhysRevX.14.011009 – reference: Iris Cong, Soonwon Choi, and Mikhail D. Lukin. 2019. Quantum convolutional neural networks. Nature Physics, 15, 12 (2019), Dec., 1273–1278. issn:1745-2481 https://doi.org/10.1038/s41567-019-0648-8 10.1038/s41567-019-0648-8 – reference: Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. 2007. Efficient quantum algorithms for simulating sparse hamiltonians. Communications in Mathematical Physics, 270, 2 (2007), March, 359–371. issn:1432-0916 https://doi.org/10.1007/s00220-006-0150-x 10.1007/s00220-006-0150-x – reference: Daniel Gottesman. 1998. Theory of fault-tolerant quantum computation. Physical Review A, 57, 1 (1998), Jan., 127–137. https://doi.org/10.1103/PhysRevA.57.127 10.1103/PhysRevA.57.127 – reference: Michael R. Geller and Zhongyuan Zhou. 2013. Factoring 51 and 85 with 8 qubits. Scientific Reports, 3, 1 (2013), Oct., 3023. issn:2045-2322 https://doi.org/10.1038/srep03023 10.1038/srep03023 – ident: e_1_2_1_18_1 doi: 10.22331/q-2020-01-13-221 – ident: e_1_2_1_21_1 – volume-title: QDD: A quantum computer emulation library. https://web.archive.org/web/20021210200357/http://home.plutonium.net/~dagreve/qdd.html year: 1999 ident: e_1_2_1_31_1 – ident: e_1_2_1_36_1 doi: 10.1145/3491248 – ident: e_1_2_1_72_1 doi: 10.1109/ICCAD45719.2019.8942057 – ident: e_1_2_1_56_1 doi: 10.1103/PhysRevA.74.022320 – ident: e_1_2_1_17_1 doi: 10.1090/s0002-9904-1910-01892-9 – ident: e_1_2_1_63_1 doi: 10.5281/zenodo.16925511 – ident: e_1_2_1_33_1 doi: 10.1109/TCAD.2022.3182628 – ident: e_1_2_1_29_1 doi: 10.22331/q-2021-03-15-410 – ident: e_1_2_1_42_1 doi: 10.1126/science.273.5278.1073 – ident: e_1_2_1_40_1 doi: 10.1145/3550488 – volume-title: Chuang year: 2010 ident: e_1_2_1_50_1 – ident: e_1_2_1_25_1 doi: 10.1038/srep03023 – ident: e_1_2_1_7_1 doi: 10.22331/q-2020-01-13-220 – ident: e_1_2_1_38_1 doi: 10.1073/pnas.0808245105 – ident: e_1_2_1_64_1 doi: 10.48550/arXiv.cond-mat/0407066 – volume-title: International Reed-Muller Workshop. year: 2007 ident: e_1_2_1_26_1 – volume-title: Introduction to algorithms (4 ed.) ident: e_1_2_1_20_1 – ident: e_1_2_1_19_1 doi: 10.1038/s41567-019-0648-8 – ident: e_1_2_1_24_1 doi: 10.1038/s43588-021-00024-z – ident: e_1_2_1_28_1 doi: 10.1103/PhysRevX.14.011009 – ident: e_1_2_1_55_1 doi: 10.1038/s41567-024-02411-5 – ident: e_1_2_1_16_1 doi: 10.1021/acs.chemrev.8b00803 – ident: e_1_2_1_10_1 doi: 10.1016/j.tcs.2014.05.025 – ident: e_1_2_1_27_1 doi: 10.1103/PhysRevA.57.127 – volume-title: Svore year: 2017 ident: e_1_2_1_35_1 – ident: e_1_2_1_69_1 doi: 10.1093/ietfec/e91-a.2.584 – ident: e_1_2_1_45_1 doi: 10.1137/050644756 – ident: e_1_2_1_37_1 doi: 10.1103/PhysRevLett.95.050501 – ident: e_1_2_1_67_1 doi: 10.22331/q-2023-09-11-1108 – ident: e_1_2_1_12_1 doi: 10.1007/s00220-006-0150-x – ident: e_1_2_1_43_1 doi: 10.48550/arXiv.1408.3106 – ident: e_1_2_1_68_1 doi: 10.1103/PhysRevLett.131.180601 – ident: e_1_2_1_54_1 doi: 10.1103/PhysRevLett.113.130503 – ident: e_1_2_1_44_1 doi: 10.48550/arXiv.1307.0411 – ident: e_1_2_1_48_1 doi: 10.1126/science.aad9480 – ident: e_1_2_1_34_1 doi: 10.1103/PhysRevLett.103.150502 – ident: e_1_2_1_73_1 doi: 10.1109/TCAD.2018.2834427 – ident: e_1_2_1_5_1 doi: 10.1007/11672142_13 – ident: e_1_2_1_6_1 doi: 10.1103/PhysRevA.100.012305 – ident: e_1_2_1_66_1 doi: 10.1103/PhysRevLett.91.147902 – ident: e_1_2_1_46_1 – ident: e_1_2_1_9_1 doi: 10.1103/PhysRevA.54.1034 – ident: e_1_2_1_51_1 doi: 10.1007/978-3-642-38986-3_11 – ident: e_1_2_1_15_1 doi: 10.1109/MC.2022.3217021 – ident: e_1_2_1_62_1 doi: 10.5281/zenodo.16929865 – ident: e_1_2_1_49_1 doi: 10.1145/3547334 – ident: e_1_2_1_59_1 doi: 10.1145/3651157 – ident: e_1_2_1_4_1 doi: 10.1103/PhysRevLett.83.5162 – ident: e_1_2_1_2_1 doi: 10.1103/PhysRevA.70.052328 – ident: e_1_2_1_13_1 doi: 10.1145/3385412.3386007 – ident: e_1_2_1_1_1 doi: 10.1038/s43588-021-00119-7 – ident: e_1_2_1_11_1 doi: 10.1007/978-3-540-88702-7_1 – ident: e_1_2_1_23_1 doi: 10.1038/s41592-020-01004-3 – ident: e_1_2_1_14_1 doi: 10.1021/acs.jctc.2c00574 – ident: e_1_2_1_3_1 doi: 10.1109/DATE.2006.244176 – ident: e_1_2_1_30_1 doi: 10.1145/2491956.2462177 – ident: e_1_2_1_52_1 doi: 10.1002/wcms.1481 – ident: e_1_2_1_47_1 doi: 10.1109/ISMVL.2006.35 – ident: e_1_2_1_39_1 doi: 10.2172/366453 – ident: e_1_2_1_65_1 doi: 10.1023/B:QINP.0000022725.70000.4a – ident: e_1_2_1_71_1 doi: 10.1103/PhysRevLett.96.170503 – ident: e_1_2_1_22_1 – ident: e_1_2_1_32_1 doi: 10.1145/237814.237866 – volume-title: Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond. 10, 3 year: 2010 ident: e_1_2_1_61_1 – ident: e_1_2_1_53_1 doi: 10.1145/3009837.3009894 – ident: e_1_2_1_57_1 doi: 10.1137/s0097539795293172 – ident: e_1_2_1_60_1 doi: 10.1038/nature12290 – ident: e_1_2_1_58_1 doi: 10.1145/3689760 – volume-title: Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Info. Comput., 3, 2 year: 2003 ident: e_1_2_1_8_1 – ident: e_1_2_1_41_1 doi: 10.1109/TQE.2024.3364546 – ident: e_1_2_1_70_1 doi: 10.1109/QCE60285.2024.00132 |
| SSID | ssj0001934839 |
| Score | 2.3060763 |
| Snippet | Classical simulation of quantum circuits is critical for the development of implementations of quantum algorithms: it does not require access to specialized... |
| SourceID | crossref acm |
| SourceType | Index Database Publisher |
| StartPage | 444 |
| SubjectTerms | Computing methodologies Quantum mechanic simulation Shared memory algorithms |
| SubjectTermsDisplay | Computing methodologies -- Quantum mechanic simulation Computing methodologies -- Shared memory algorithms |
| Title | qblaze: An Efficient and Scalable Sparse Quantum Simulator |
| URI | https://dl.acm.org/doi/10.1145/3763066 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2475-1421 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001934839 issn: 2475-1421 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbK48ClFAri0SIfekMRiePEMbcVpeVQYKVdEDfkOBOxEslus4AQh_72jh8JEeUAh16iyHEirT_rm8-z8yDkmwQV6qQsgqJgEPC8zAOFhjsAlMuSMaESpWyzCXF2ll1dyaEPCZrbdgKirrPHRzn7r1DjGIJtUmffAXf3URzAewQdrwg7Xt8E_O_8Vj2Bd_gd2woRbRz5CAGxqVKjGZ5nwUR0osmp9keTynTxmjZ9qTrsTJuN9hgcnZo_Fnw8V2U8DK2vs5Pll0icD9aY2YoF7fBFMa3mzaRBXmnuvX96fDN5TkL7brKsmql91d6rLmT4J9x0e6ruuyiYLW0ayt6m8mHvltYYFziBu7zoloNlb6udnw9Hvwasx6rclYj0Bpq7TiP_cj83ZTIMYYbpi-razl67JwtkiYlEGgY8_dPzx8mYo1h0edXmWwd-vpEtuurJlp7-GH8iH_3BgQ4c4GvkA9TrZLVtykE9R38mhw7_QzqoaYc-RfRpiz516FOPPu3Q3yAXP47HRyeBb5ARKHPsDkQkdZgWPMrx1MHiIo0hEnmcxlEKOgVe5hmkAkCWOWSJ6ZygQyaBySTO8cdG8SZZrKc1bBFalkIDil3uClIlKkZprVHr6TLJiqLcJuu4CtczVwLl2q_NNqHtqnSPXKZ70k7ZefXFXbLyvFG-kMW75h6-kmX9cDeZN3sWmb-qmFSr |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=qblaze%3A+An+Efficient+and+Scalable+Sparse+Quantum+Simulator&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Venev%2C+Hristo&rft.au=Udomsrirungruang%2C+Thien&rft.au=Dimitrov%2C+Dimitar&rft.au=Gehr%2C+Timon&rft.date=2025-10-09&rft.pub=ACM&rft.eissn=2475-1421&rft.volume=9&rft.issue=OOPSLA2&rft.spage=444&rft.epage=470&rft_id=info:doi/10.1145%2F3763066&rft.externalDocID=3763066 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon |