Two Approaches to Fast Bytecode Frontend for Static Analysis

In static analysis frameworks for Java, the bytecode frontend serves as a critical component, transforming complex, stack-based Java bytecode into a more analyzable register-based, typed 3-address code representation. This transformation often significantly influences the overall performance of anal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of ACM on programming languages Ročník 9; číslo OOPSLA2; s. 867 - 893
Hlavní autoři: Li, Chenxi, Lin, Haoran, Tan, Tian, Li, Yue
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 09.10.2025
Témata:
ISSN:2475-1421, 2475-1421
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In static analysis frameworks for Java, the bytecode frontend serves as a critical component, transforming complex, stack-based Java bytecode into a more analyzable register-based, typed 3-address code representation. This transformation often significantly influences the overall performance of analysis frameworks, particularly when processing large-scale Java applications, rendering the efficiency of the bytecode frontend paramount for static analysis. However, the bytecode frontends of currently dominant Java static analysis frameworks, Soot and WALA, despite being time-tested and widely adopted, exhibit limitations in efficiency, hindering their ability to offer a better user experience. To tackle efficiency issues, we introduce a new bytecode frontend. Typically, bytecode frontends consist of two key stages: (1) translating Java bytecode to untyped 3-address code, and (2) performing type inference on this code. For 3-address code translation, we identified common patterns in bytecode that enable more efficient processing than traditional methods. For type inference, we found that traditional algorithms often include redundant computations that hinder performance. Leveraging these insights, we propose two novel approaches: pattern-aware 3-address code translation and pruning-based type inference, which together form our new frontend and lead to significant efficiency improvements. Besides, our approach can also generate SSA IR, enhancing its usability for various static analysis techniques. We implemented our new bytecode frontend in Tai-e, a recent state-of-the-art static analysis framework for Java, and evaluated its performance across a diverse set of Java applications. Experimental results demonstrate that our frontend significantly outperforms Soot, WALA, and SootUp (an overhaul of Soot)—in terms of efficiency, being on average 14.2×, 14.5×, and 75.2× faster than Soot, WALA, and SootUp, respectively. Moreover, additional experiments reveal that our frontend exhibits superior reliability in processing Java bytecode compared to these tools, thus providing a more robust foundation for Java static analysis.
AbstractList In static analysis frameworks for Java, the bytecode frontend serves as a critical component, transforming complex, stack-based Java bytecode into a more analyzable register-based, typed 3-address code representation. This transformation often significantly influences the overall performance of analysis frameworks, particularly when processing large-scale Java applications, rendering the efficiency of the bytecode frontend paramount for static analysis. However, the bytecode frontends of currently dominant Java static analysis frameworks, Soot and WALA, despite being time-tested and widely adopted, exhibit limitations in efficiency, hindering their ability to offer a better user experience. To tackle efficiency issues, we introduce a new bytecode frontend. Typically, bytecode frontends consist of two key stages: (1) translating Java bytecode to untyped 3-address code, and (2) performing type inference on this code. For 3-address code translation, we identified common patterns in bytecode that enable more efficient processing than traditional methods. For type inference, we found that traditional algorithms often include redundant computations that hinder performance. Leveraging these insights, we propose two novel approaches: pattern-aware 3-address code translation and pruning-based type inference, which together form our new frontend and lead to significant efficiency improvements. Besides, our approach can also generate SSA IR, enhancing its usability for various static analysis techniques. We implemented our new bytecode frontend in Tai-e, a recent state-of-the-art static analysis framework for Java, and evaluated its performance across a diverse set of Java applications. Experimental results demonstrate that our frontend significantly outperforms Soot, WALA, and SootUp (an overhaul of Soot)—in terms of efficiency, being on average 14.2×, 14.5×, and 75.2× faster than Soot, WALA, and SootUp, respectively. Moreover, additional experiments reveal that our frontend exhibits superior reliability in processing Java bytecode compared to these tools, thus providing a more robust foundation for Java static analysis.
In static analysis frameworks for Java, the bytecode frontend serves as a critical component, transforming complex, stack-based Java bytecode into a more analyzable register-based, typed 3-address code representation. This transformation often significantly influences the overall performance of analysis frameworks, particularly when processing large-scale Java applications, rendering the efficiency of the bytecode frontend paramount for static analysis. However, the bytecode frontends of currently dominant Java static analysis frameworks, Soot and WALA, despite being time-tested and widely adopted, exhibit limitations in efficiency, hindering their ability to offer a better user experience. To tackle efficiency issues, we introduce a new bytecode frontend. Typically, bytecode frontends consist of two key stages: (1) translating Java bytecode to untyped 3-address code, and (2) performing type inference on this code. For 3-address code translation, we identified common patterns in bytecode that enable more efficient processing than traditional methods. For type inference, we found that traditional algorithms often include redundant computations that hinder performance. Leveraging these insights, we propose two novel approaches: pattern-aware 3-address code translation and pruning-based type inference , which together form our new frontend and lead to significant efficiency improvements. Besides, our approach can also generate SSA IR, enhancing its usability for various static analysis techniques. We implemented our new bytecode frontend in Tai-e, a recent state-of-the-art static analysis framework for Java, and evaluated its performance across a diverse set of Java applications. Experimental results demonstrate that our frontend significantly outperforms Soot, WALA, and SootUp (an overhaul of Soot)—in terms of efficiency, being on average 14.2×, 14.5×, and 75.2× faster than Soot, WALA, and SootUp, respectively. Moreover, additional experiments reveal that our frontend exhibits superior reliability in processing Java bytecode compared to these tools, thus providing a more robust foundation for Java static analysis.
ArticleNumber 303
Author Li, Chenxi
Lin, Haoran
Li, Yue
Tan, Tian
Author_xml – sequence: 1
  givenname: Chenxi
  orcidid: 0009-0008-7421-5158
  surname: Li
  fullname: Li, Chenxi
  email: 502022330024@smail.nju.edu.cn
  organization: Nanjing University, Nanjing, China
– sequence: 2
  givenname: Haoran
  orcidid: 0009-0006-9119-055X
  surname: Lin
  fullname: Lin, Haoran
  email: 201250184@smail.nju.edu.cn
  organization: Nanjing University, Nanjing, China
– sequence: 3
  givenname: Tian
  orcidid: 0009-0009-3792-1237
  surname: Tan
  fullname: Tan, Tian
  email: tiantan@nju.edu.cn
  organization: Nanjing University, Nanjing, China
– sequence: 4
  givenname: Yue
  orcidid: 0009-0009-1285-2298
  surname: Li
  fullname: Li, Yue
  email: yueli@nju.edu.cn
  organization: Nanjing University, Nanjing, China
BookMark eNpNj8FLwzAYxYNMcM7h3VNunqr5liZNwEsdqwoDD85zSdKvWNmakgSk_72VTZHv8L7H-_HgXZJZ73sk5BrYHUAu7nkhOVNwRuarvBAZ5CuY_fsvyDLGT8YYaJ4rrufkYfflaTkMwRv3gZEmTysTE30cEzrfIK2C7xP2DW19oG_JpM7Rsjf7MXbxipy3Zh9xedIFea82u_Vztn19elmX28yAkJBJabhxvAFExRucTjrhpG6VtNrloFWhxWQn46zG1jKwyJnlRmChhOULcnvsdcHHGLCth9AdTBhrYPXP7vq0eyJvjqRxhz_oN_wGBNBTnQ
Cites_doi 10.1145/3597926.3598050
10.1145/3510457.3513075
10.5281/zenodo.16923368
10.1145/1449764.1449802
10.1145/1639949.1640108
10.1145/1377492.1377496
10.1145/3649828
10.1145/3658644.3690338
10.1145/3411764.3445616
10.1109/MS.2008.130
10.1109/CGO.2009.19
10.1145/1369396.1370017
10.1145/1167473.1167488
10.1145/1251535.1251536
10.1145/2970276.2970347
10.1002/(SICI)1097-024X(200003)30:3<199::AID-SPE296>3.0.CO;2-2
10.1145/3663529.3664458
10.1145/383043.383045
10.1007/978-3-031-57246-3_13
10.1145/3597926.3598120
10.1145/3571258
10.1145/3428236
10.1145/3338112
10.1145/3460120.3484541
10.4230/LIPIcs.ECOOP.2016.15
10.1145/115372.115320
10.1145/304065.304113
10.5555/781995.782008
10.1007/978-3-540-45099-3_11
10.1145/3453483.3454099
10.1145/3656417
ContentType Journal Article
Copyright Owner/Author
Copyright_xml – notice: Owner/Author
DBID AAYXX
CITATION
DOI 10.1145/3763081
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-1421
EndPage 893
ExternalDocumentID 10_1145_3763081
3763081
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2023YFB4503804
– fundername: National Natural Science Foundation of China
  grantid: 62402210
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID AAKMM
AAYFX
ACM
AEFXT
AEJOY
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
GUFHI
LHSKQ
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-a1561-66a3ac3d1ee83deded6c5c69f86b9c419879569fb9ccb9efb01be30b3a5e785b3
ISSN 2475-1421
IngestDate Thu Oct 16 04:38:56 EDT 2025
Mon Oct 13 16:30:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue OOPSLA2
Keywords Java
Bytecode
Frontend
Static Analysis
3-Address Code
Type Inference
Language English
License This work is licensed under Creative Commons Attribution International 4.0.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a1561-66a3ac3d1ee83deded6c5c69f86b9c419879569fb9ccb9efb01be30b3a5e785b3
ORCID 0009-0006-9119-055X
0009-0009-3792-1237
0009-0008-7421-5158
0009-0009-1285-2298
OpenAccessLink https://dl.acm.org/doi/10.1145/3763081
PageCount 27
ParticipantIDs crossref_primary_10_1145_3763081
acm_primary_3763081
PublicationCentury 2000
PublicationDate 20251009
2025-10-09
PublicationDateYYYYMMDD 2025-10-09
PublicationDate_xml – month: 10
  year: 2025
  text: 20251009
  day: 09
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle Proceedings of ACM on programming languages
PublicationTitleAbbrev ACM PACMPL
PublicationYear 2025
Publisher ACM
Publisher_xml – name: ACM
References Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently computing static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst., 13, 4 (1991), oct, 451–490. issn:0164-0925 https://doi.org/10.1145/115372.115320 10.1145/115372.115320
Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program Tailoring: Slicing by Sequential Criteria. In 30th European Conference on Object-Oriented Programming (ECOOP 2016), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 56). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 15:1–15:27. isbn:978-3-95977-014-9 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ECOOP.2016.15 10.4230/LIPIcs.ECOOP.2016.15
Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. 2021. MirChecker: Detecting Bugs in Rust Programs via Static Analysis. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS ’21). Association for Computing Machinery, New York, NY, USA. 2183–2196. isbn:9781450384544 https://doi.org/10.1145/3460120.3484541 10.1145/3460120.3484541
Laurent Hubert, Nicolas Barré, Frédéric Besson, Delphine Demange, Thomas Jensen, Vincent Monfort, David Pichardie, and Tiphaine Turpin. 2011. Sawja: Static Analysis Workshop for Java. In Formal Verification of Object-Oriented Software, Bernhard Beckert and Claude Marché (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 92–106. isbn:978-3-642-18070-5
Yichi Zhang. 2024. Detecting Code Comment Inconsistencies using LLM and Program Analysis. In Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering (FSE 2024). Association for Computing Machinery, New York, NY, USA. 683–685. isbn:9798400706585 https://doi.org/10.1145/3663529.3664458 10.1145/3663529.3664458
Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and John Penix. 2008. Using Static Analysis to Find Bugs. IEEE Software, 25, 5 (2008), 22–29. https://doi.org/10.1109/MS.2008.130 10.1109/MS.2008.130
WALA. 2006. Watson Libraries for Analysis.
Yuandao Cai, Peisen Yao, and Charles Zhang. 2021. Canary: practical static detection of inter-thread value-flow bugs. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA. 1126–1140. isbn:9781450383912 https://doi.org/10.1145/3453483.3454099 10.1145/3453483.3454099
Keith Cooper, Timothy Harvey, and Ken Kennedy. 2006. A Simple, Fast Dominance Algorithm. Journal Abbreviation: Rice University, CS Technical Report 06-33870 Publication Title: Rice University, CS Technical Report 06-33870
Andreas Gal, Christian W. Probst, and Michael Franz. 2008. Java bytecode verification via static single assignment form. ACM Trans. Program. Lang. Syst., 30, 4 (2008), Article 21, aug, 21 pages. issn:0164-0925 https://doi.org/10.1145/1377492.1377496 10.1145/1377492.1377496
Chenxi Li, Haoran Lin, Tian Tan, and Yue Li. 2025. Two Approaches to Fast Bytecode Frontend for Static Analysis (Artifacts). https://doi.org/10.5281/zenodo.16923368 10.5281/zenodo.16923368
Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses. ACM SIGPLAN Notices, 44, 10 (2009), Oct., 243–262. issn:0362-1340, 1558-1160 https://doi.org/10.1145/1639949.1640108 10.1145/1639949.1640108
Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies, and Vatsa Santhanam. 1999. Translating Out of Static Single Assignment Form. In Static Analysis, Agostino Cortesi and Gilberto Filé (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 194–210. isbn:978-3-540-48294-9
Yiu Wai Chow, Max Schäfer, and Michael Pradel. 2023. Beware of the Unexpected: Bimodal Taint Analysis. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023). Association for Computing Machinery, New York, NY, USA. 211–222. isbn:9798400702211 https://doi.org/10.1145/3597926.3598050 10.1145/3597926.3598050
Kadiray Karakaya, Stefan Schott, Jonas Klauke, Eric Bodden, Markus Schmidt, Linghui Luo, and Dongjie He. 2024. SootUp: A Redesign of the Soot Static Analysis Framework. In Tools and Algorithms for the Construction and Analysis of Systems, Bernd Finkbeiner and Laura Kovács (Eds.). Springer Nature Switzerland, 229–247. isbn:978-3-031-57246-3 https://doi.org/10.1007/978-3-031-57246-3_13 Place: Cham 10.1007/978-3-031-57246-3_13
Anders Møller and Oskar Haarklou Veileborg. 2020. Eliminating abstraction overhead of Java stream pipelines using ahead-of-time program optimization. Proc. ACM Program. Lang., 4, OOPSLA (2020), Article 168, Nov., 29 pages. https://doi.org/10.1145/3428236 10.1145/3428236
Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach. Proc. ACM Program. Lang., 8, OOPSLA1 (2024), Article 111, April, 26 pages. https://doi.org/10.1145/3649828 10.1145/3649828
Matthieu Lemerre. 2023. SSA Translation Is an Abstract Interpretation. Proceedings of the ACM on Programming Languages, 7, POPL (2023), Jan., 65:1895–65:1924. https://doi.org/10.1145/3571258 10.1145/3571258
Ben Bellamy, Pavel Avgustinov, Oege de Moor, and Damien Sereni. 2008. Efficient local type inference. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages and Applications (OOPSLA ’08). Association for Computing Machinery, New York, NY, USA. 475–492. isbn:9781605582153 https://doi.org/10.1145/1449764.1449802 10.1145/1449764.1449802
Todd B. Knoblock and Jakob Rehof. 2001. Type elaboration and subtype completion for Java bytecode. ACM Trans. Program. Lang. Syst., 23, 2 (2001), March, 243–272. issn:0164-0925 https://doi.org/10.1145/383043.383045 10.1145/383043.383045
Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez, Kenneth Russell, and David Cox. 2008. Design of the Java HotSpot™ client compiler for Java 6. ACM Trans. Archit. Code Optim., 5, 1 (2008), Article 7, may, 32 pages. issn:1544-3566 https://doi.org/10.1145/1369396.1370017 10.1145/1369396.1370017
Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java Virtual Machine Specification, Java SE 8 Edition (1st ed.). Addison-Wesley Professional. isbn:013390590X
Mohammad Tahaei, Kami Vaniea, Konstantin (Kosta) Beznosov, and Maria K Wolters. 2021. Security Notifications in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to Act on Them. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). Association for Computing Machinery, New York, NY, USA. Article 691, 17 pages. isbn:9781450380966 https://doi.org/10.1145/3411764.3445616 10.1145/3411764.3445616
Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo benchmarks: java benchmarking development and analysis. In Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’06). Association for Computing Machinery, New York, NY, USA. 169–190. isbn:1595933484 https://doi.org/10.1145/1167473.1167488 10.1145/1167473.1167488
Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson. 1998. Practical improvements to the construction and destruction of static single assignment form. Softw. Pract. Exper., 28, 8 (1998), jul, 859–881. issn:0038-0644
Anders Møller and Michael I. Schwartzbach. 2018. Static Program Analysis. Department of Computer Science, Aarhus University, http://cs.au.dk/ãmoeller/spa
Maria Christakis and Christian Bird. 2016. What developers want and need from program analysis: an empirical study. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE ’16). Association for Computing Machinery, 332–343. isbn:978-1-4503-3845-5 https://doi.org/10.1145/2970276.2970347 Place: New York, NY, USA 10.1145/2970276.2970347
Zexin Zhong, Jiangchao Liu, Diyu Wu, Peng Di, Yulei Sui, and Alex X. Liu. 2022. Field-based static taint analysis for industrial microservices. In Proceedings of the 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP ’22). Association for Computing Machinery, New York, NY, USA. 149–150. isbn:9781450392266 https://doi.org/10.1145/3510457.3513075 10.1145/3510457.3513075
Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and David Tarditi. 2000. Marmot: an optimizing compiler for Java. Software: Practice and Experience, 30, 3 (2000), 199–232. https://doi.org/10.1002/(SICI)1097-024X(200003)30:3<199::AID-SPE296>3.0.CO;2-2 10.1002/(SICI)1097-024X(200003)30:3<199::AID-SPE296>3.0.CO;2-2
Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a Java bytecode optimization framework. In Proceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative research (CASCON ’99). IBM Press, 13. Place: Mississauga, Ontario, Canada
Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John Whaley. 1999. The Jalapeño dynamic optimizing compiler for Java. In Proceedings of the ACM 1999 Conference on Java Grande (JAVA ’99). Association for Computing Machinery, New York, NY, USA. 129–141. isbn:1581131615 https://doi.org/10.1145/304065.304113 10.1145/304065.304113
Delphine Demange, Thomas Jensen, and David Pichardie. 2010. A Provably Correct Stackless Intermediate Representation for Java Bytecode. In Programming Languages and Systems, Kazunori Ueda
Briggs Preston (e_1_2_1_7_1) 1998
Sreedhar Vugranam C. (e_1_2_1_33_1) 1999
Pratt Vaughan (e_1_2_1_32_1) 1996
e_1_2_1_20_1
e_1_2_1_40_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
Lindholm Tim (e_1_2_1_28_1)
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_25_1
Cooper Keith (e_1_2_1_12_1) 2006
e_1_2_1_26_1
e_1_2_1_29_1
Møller Anders (e_1_2_1_30_1) 2018
Hubert Laurent (e_1_2_1_19_1) 2011
Demange Delphine (e_1_2_1_14_1)
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_1_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_37_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
References_xml – reference: WALA. 2006. Watson Libraries for Analysis.
– reference: Mohammad Tahaei, Kami Vaniea, Konstantin (Kosta) Beznosov, and Maria K Wolters. 2021. Security Notifications in Static Analysis Tools: Developers’ Attitudes, Comprehension, and Ability to Act on Them. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). Association for Computing Machinery, New York, NY, USA. Article 691, 17 pages. isbn:9781450380966 https://doi.org/10.1145/3411764.3445616 10.1145/3411764.3445616
– reference: Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program Tailoring: Slicing by Sequential Criteria. In 30th European Conference on Object-Oriented Programming (ECOOP 2016), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 56). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 15:1–15:27. isbn:978-3-95977-014-9 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ECOOP.2016.15 10.4230/LIPIcs.ECOOP.2016.15
– reference: Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and John Penix. 2008. Using Static Analysis to Find Bugs. IEEE Software, 25, 5 (2008), 22–29. https://doi.org/10.1109/MS.2008.130 10.1109/MS.2008.130
– reference: Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a Java bytecode optimization framework. In Proceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative research (CASCON ’99). IBM Press, 13. Place: Mississauga, Ontario, Canada
– reference: Benoit Boissinot, Alain Darte, Fabrice Rastello, Benoit Dupont de Dinechin, and Christophe Guillon. 2009. Revisiting Out-of-SSA Translation for Correctness, Code Quality and Efficiency. In Proceedings of the 7th Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO ’09). IEEE Computer Society, USA. 114–125. isbn:9780769535760 https://doi.org/10.1109/CGO.2009.19 10.1109/CGO.2009.19
– reference: Todd B. Knoblock and Jakob Rehof. 2001. Type elaboration and subtype completion for Java bytecode. ACM Trans. Program. Lang. Syst., 23, 2 (2001), March, 243–272. issn:0164-0925 https://doi.org/10.1145/383043.383045 10.1145/383043.383045
– reference: Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C.S. Lui. 2021. MirChecker: Detecting Bugs in Rust Programs via Static Analysis. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS ’21). Association for Computing Machinery, New York, NY, USA. 2183–2196. isbn:9781450384544 https://doi.org/10.1145/3460120.3484541 10.1145/3460120.3484541
– reference: Delphine Demange, Thomas Jensen, and David Pichardie. 2010. A Provably Correct Stackless Intermediate Representation for Java Bytecode. In Programming Languages and Systems, Kazunori Ueda (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg. 97–113. isbn:978-3-642-17164-2
– reference: Etienne M. Gagnon, Laurie J. Hendren, and Guillaume Marceau. 2000. Efficient Inference of Static Types for Java Bytecode. In Static Analysis, Jens Palsberg (Ed.). Springer, Berlin, Heidelberg. 199–219. isbn:978-3-540-45099-3 https://doi.org/10.1007/978-3-540-45099-3_11 10.1007/978-3-540-45099-3_11
– reference: Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John Whaley. 1999. The Jalapeño dynamic optimizing compiler for Java. In Proceedings of the ACM 1999 Conference on Java Grande (JAVA ’99). Association for Computing Machinery, New York, NY, USA. 129–141. isbn:1581131615 https://doi.org/10.1145/304065.304113 10.1145/304065.304113
– reference: Yuandao Cai, Peisen Yao, and Charles Zhang. 2021. Canary: practical static detection of inter-thread value-flow bugs. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI 2021). Association for Computing Machinery, New York, NY, USA. 1126–1140. isbn:9781450383912 https://doi.org/10.1145/3453483.3454099 10.1145/3453483.3454099
– reference: Laurent Hubert, Nicolas Barré, Frédéric Besson, Delphine Demange, Thomas Jensen, Vincent Monfort, David Pichardie, and Tiphaine Turpin. 2011. Sawja: Static Analysis Workshop for Java. In Formal Verification of Object-Oriented Software, Bernhard Beckert and Claude Marché (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 92–106. isbn:978-3-642-18070-5
– reference: Christian Wimmer, Codrut Stancu, David Kozak, and Thomas Würthinger. 2024. Scaling Type-Based Points-to Analysis with Saturation. Proc. ACM Program. Lang., 8, PLDI (2024), Article 187, June, 24 pages. https://doi.org/10.1145/3656417 10.1145/3656417
– reference: Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies, and Vatsa Santhanam. 1999. Translating Out of Static Single Assignment Form. In Static Analysis, Agostino Cortesi and Gilberto Filé (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 194–210. isbn:978-3-540-48294-9
– reference: Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, and David Tarditi. 2000. Marmot: an optimizing compiler for Java. Software: Practice and Experience, 30, 3 (2000), 199–232. https://doi.org/10.1002/(SICI)1097-024X(200003)30:3<199::AID-SPE296>3.0.CO;2-2 10.1002/(SICI)1097-024X(200003)30:3<199::AID-SPE296>3.0.CO;2-2
– reference: Yichi Zhang. 2024. Detecting Code Comment Inconsistencies using LLM and Program Analysis. In Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering (FSE 2024). Association for Computing Machinery, New York, NY, USA. 683–685. isbn:9798400706585 https://doi.org/10.1145/3663529.3664458 10.1145/3663529.3664458
– reference: Zexin Zhong, Jiangchao Liu, Diyu Wu, Peng Di, Yulei Sui, and Alex X. Liu. 2022. Field-based static taint analysis for industrial microservices. In Proceedings of the 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP ’22). Association for Computing Machinery, New York, NY, USA. 149–150. isbn:9781450392266 https://doi.org/10.1145/3510457.3513075 10.1145/3510457.3513075
– reference: Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo benchmarks: java benchmarking development and analysis. In Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’06). Association for Computing Machinery, New York, NY, USA. 169–190. isbn:1595933484 https://doi.org/10.1145/1167473.1167488 10.1145/1167473.1167488
– reference: Ben Bellamy, Pavel Avgustinov, Oege de Moor, and Damien Sereni. 2008. Efficient local type inference. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages and Applications (OOPSLA ’08). Association for Computing Machinery, New York, NY, USA. 475–492. isbn:9781605582153 https://doi.org/10.1145/1449764.1449802 10.1145/1449764.1449802
– reference: Kadiray Karakaya, Stefan Schott, Jonas Klauke, Eric Bodden, Markus Schmidt, Linghui Luo, and Dongjie He. 2024. SootUp: A Redesign of the Soot Static Analysis Framework. In Tools and Algorithms for the Construction and Analysis of Systems, Bernd Finkbeiner and Laura Kovács (Eds.). Springer Nature Switzerland, 229–247. isbn:978-3-031-57246-3 https://doi.org/10.1007/978-3-031-57246-3_13 Place: Cham 10.1007/978-3-031-57246-3_13
– reference: Yiu Wai Chow, Max Schäfer, and Michael Pradel. 2023. Beware of the Unexpected: Bimodal Taint Analysis. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023). Association for Computing Machinery, New York, NY, USA. 211–222. isbn:9798400702211 https://doi.org/10.1145/3597926.3598050 10.1145/3597926.3598050
– reference: Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling static analyses at Facebook. Commun. ACM, 62, 8 (2019), July, 62–70. issn:0001-0782 https://doi.org/10.1145/3338112 10.1145/3338112
– reference: Keith Cooper, Timothy Harvey, and Ken Kennedy. 2006. A Simple, Fast Dominance Algorithm. Journal Abbreviation: Rice University, CS Technical Report 06-33870 Publication Title: Rice University, CS Technical Report 06-33870
– reference: Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses. ACM SIGPLAN Notices, 44, 10 (2009), Oct., 243–262. issn:0362-1340, 1558-1160 https://doi.org/10.1145/1639949.1640108 10.1145/1639949.1640108
– reference: Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez, Kenneth Russell, and David Cox. 2008. Design of the Java HotSpot™ client compiler for Java 6. ACM Trans. Archit. Code Optim., 5, 1 (2008), Article 7, may, 32 pages. issn:1544-3566 https://doi.org/10.1145/1369396.1370017 10.1145/1369396.1370017
– reference: Anders Møller and Oskar Haarklou Veileborg. 2020. Eliminating abstraction overhead of Java stream pipelines using ahead-of-time program optimization. Proc. ACM Program. Lang., 4, OOPSLA (2020), Article 168, Nov., 29 pages. https://doi.org/10.1145/3428236 10.1145/3428236
– reference: Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian Zhou. 2007. Evaluating static analysis defect warnings on production software. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering. ACM, San Diego California USA. 1–8. isbn:978-1-59593-595-3 https://doi.org/10.1145/1251535.1251536 10.1145/1251535.1251536
– reference: Matthieu Lemerre. 2023. SSA Translation Is an Abstract Interpretation. Proceedings of the ACM on Programming Languages, 7, POPL (2023), Jan., 65:1895–65:1924. https://doi.org/10.1145/3571258 10.1145/3571258
– reference: Vaughan Pratt and Jerzy Tiuryn. 1996. Satisfiability of Inequalities in a Poset. Fundam. Inf., 28, 1,2 (1996), apr, 165–182. issn:0169-2968
– reference: Chenxi Li, Haoran Lin, Tian Tan, and Yue Li. 2025. Two Approaches to Fast Bytecode Frontend for Static Analysis (Artifacts). https://doi.org/10.5281/zenodo.16923368 10.5281/zenodo.16923368
– reference: Andreas Gal, Christian W. Probst, and Michael Franz. 2008. Java bytecode verification via static single assignment form. ACM Trans. Program. Lang. Syst., 30, 4 (2008), Article 21, aug, 21 pages. issn:0164-0925 https://doi.org/10.1145/1377492.1377496 10.1145/1377492.1377496
– reference: Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Taylor Simpson. 1998. Practical improvements to the construction and destruction of static single assignment form. Softw. Pract. Exper., 28, 8 (1998), jul, 859–881. issn:0038-0644
– reference: Maria Christakis and Christian Bird. 2016. What developers want and need from program analysis: an empirical study. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE ’16). Association for Computing Machinery, 332–343. isbn:978-1-4503-3845-5 https://doi.org/10.1145/2970276.2970347 Place: New York, NY, USA 10.1145/2970276.2970347
– reference: Tong Liu, Zizhuang Deng, Guozhu Meng, Yuekang Li, and Kai Chen. 2024. Demystifying RCE Vulnerabilities in LLM-Integrated Apps. 15 pages. isbn:9798400706363 https://doi.org/10.1145/3658644.3690338 10.1145/3658644.3690338
– reference: Anders Møller and Michael I. Schwartzbach. 2018. Static Program Analysis. Department of Computer Science, Aarhus University, http://cs.au.dk/ãmoeller/spa/
– reference: Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian. 2024. Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach. Proc. ACM Program. Lang., 8, OOPSLA1 (2024), Article 111, April, 26 pages. https://doi.org/10.1145/3649828 10.1145/3649828
– reference: Tian Tan and Yue Li. 2023. Tai-e: A Developer-Friendly Static Analysis Framework for Java by Harnessing the Good Designs of Classics. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023). Association for Computing Machinery, 1093–1105. https://doi.org/10.1145/3597926.3598120 Place: New York, NY, USA 10.1145/3597926.3598120
– reference: Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently computing static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst., 13, 4 (1991), oct, 451–490. issn:0164-0925 https://doi.org/10.1145/115372.115320 10.1145/115372.115320
– reference: Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java Virtual Machine Specification, Java SE 8 Edition (1st ed.). Addison-Wesley Professional. isbn:013390590X
– ident: e_1_2_1_10_1
  doi: 10.1145/3597926.3598050
– ident: e_1_2_1_40_1
  doi: 10.1145/3510457.3513075
– volume-title: Java SE 8 Edition
  ident: e_1_2_1_28_1
– year: 2006
  ident: e_1_2_1_12_1
  article-title: A Simple, Fast Dominance Algorithm
  publication-title: Journal Abbreviation: Rice University, CS Technical Report 06-33870 Publication Title: Rice University, CS Technical Report 06-33870
– ident: e_1_2_1_24_1
  doi: 10.5281/zenodo.16923368
– ident: e_1_2_1_3_1
  doi: 10.1145/1449764.1449802
– ident: e_1_2_1_6_1
  doi: 10.1145/1639949.1640108
– volume-title: Satisfiability of Inequalities in a Poset. Fundam. Inf., 28, 1,2
  year: 1996
  ident: e_1_2_1_32_1
– ident: e_1_2_1_18_1
  doi: 10.1145/1377492.1377496
– ident: e_1_2_1_25_1
  doi: 10.1145/3649828
– ident: e_1_2_1_29_1
  doi: 10.1145/3658644.3690338
– ident: e_1_2_1_34_1
  doi: 10.1145/3411764.3445616
– ident: e_1_2_1_37_1
– ident: e_1_2_1_1_1
  doi: 10.1109/MS.2008.130
– ident: e_1_2_1_5_1
  doi: 10.1109/CGO.2009.19
– ident: e_1_2_1_22_1
  doi: 10.1145/1369396.1370017
– ident: e_1_2_1_4_1
  doi: 10.1145/1167473.1167488
– ident: e_1_2_1_2_1
  doi: 10.1145/1251535.1251536
– ident: e_1_2_1_11_1
  doi: 10.1145/2970276.2970347
– ident: e_1_2_1_16_1
  doi: 10.1002/(SICI)1097-024X(200003)30:3<199::AID-SPE296>3.0.CO;2-2
– ident: e_1_2_1_39_1
  doi: 10.1145/3663529.3664458
– ident: e_1_2_1_21_1
  doi: 10.1145/383043.383045
– ident: e_1_2_1_20_1
  doi: 10.1007/978-3-031-57246-3_13
– volume-title: David M. Gillies, and Vatsa Santhanam.
  year: 1999
  ident: e_1_2_1_33_1
– ident: e_1_2_1_35_1
  doi: 10.1145/3597926.3598120
– ident: e_1_2_1_23_1
  doi: 10.1145/3571258
– ident: e_1_2_1_31_1
  doi: 10.1145/3428236
– start-page: 0
  volume-title: Sawja: Static Analysis Workshop for Java. In Formal Verification of Object-Oriented Software, Bernhard Beckert and Claude Marché (Eds.). Springer Berlin Heidelberg
  year: 2011
  ident: e_1_2_1_19_1
– ident: e_1_2_1_15_1
  doi: 10.1145/3338112
– ident: e_1_2_1_27_1
  doi: 10.1145/3460120.3484541
– ident: e_1_2_1_26_1
  doi: 10.4230/LIPIcs.ECOOP.2016.15
– ident: e_1_2_1_13_1
  doi: 10.1145/115372.115320
– volume-title: A Provably Correct Stackless Intermediate Representation for Java Bytecode
  ident: e_1_2_1_14_1
– ident: e_1_2_1_8_1
  doi: 10.1145/304065.304113
– volume-title: Schwartzbach
  year: 2018
  ident: e_1_2_1_30_1
– ident: e_1_2_1_36_1
  doi: 10.5555/781995.782008
– volume-title: Practical improvements to the construction and destruction of static single assignment form. Softw. Pract. Exper., 28, 8
  year: 1998
  ident: e_1_2_1_7_1
– ident: e_1_2_1_17_1
  doi: 10.1007/978-3-540-45099-3_11
– ident: e_1_2_1_9_1
  doi: 10.1145/3453483.3454099
– ident: e_1_2_1_38_1
  doi: 10.1145/3656417
SSID ssj0001934839
Score 2.3055243
Snippet In static analysis frameworks for Java, the bytecode frontend serves as a critical component, transforming complex, stack-based Java bytecode into a more...
SourceID crossref
acm
SourceType Index Database
Publisher
StartPage 867
SubjectTerms Automated static analysis
Software and its engineering
SubjectTermsDisplay Software and its engineering -- Automated static analysis
Title Two Approaches to Fast Bytecode Frontend for Static Analysis
URI https://dl.acm.org/doi/10.1145/3763081
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2475-1421
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001934839
  issn: 2475-1421
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6llEMv0FIQtBTtgVvl4uc-pF4CAnHgEQkq0RPaXY-lSMRB4EB64bcz6_XaFlQCDiiSlYyzkbXz5dvZ2XkQsm1SbkwY64CLPAvSBGSgeI5bFc6U0cbCqqibTfCTE3FxIUeDwcznwtxd8bIU87m8fldVowyVbVNn36Du9kdRgO9R6XhFteP1dYq_n1rbss6UcvUbDtRt9XP3XwU2fx1NVVuQqszrAENra45NW5qkb6qO2qWtjvYY7h3bg4UmnmtiPQze19ma5Udjd4IP5XzcyWpeO1SItS7ot2mK3MOmG_t3Bn0_RFzXLw1lR1dxylGWunznX_AfWcO3sger09PR2dEw7jGocN05_GLs2ic-5_nUlsSw5BiKqFvK_PH9kxWujTt0WdjZZTPwA_kY80xaMjx-6LnmZJKKugdd-_wu3dqO3WnGWmvGTHrWTM8sOf9Mlpr9BB06HHwhAyhXyLLv1UEb6v5KfiMsaAcLWk2phQX1sKAeFhRhQR0sqIfFKvlzsH--dxg0nTMChfvxKGBMJcokeQQgkhzwxUxmmCwE09Kk1tGE-2JZ4AejJRQ6jDQkoU5UBlxkOlkjC-W0hHVCBQsll8AgK5DvRSEBYhmlWuYFU_i33iArOA-X1642ip_ZDUL9vLS3nkz-t5e_8p186pC2SRaqmxn8IIvmrhrf3mzVSnsEuDZc9g
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Approaches+to+Fast+Bytecode+Frontend+for+Static+Analysis&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Li%2C+Chenxi&rft.au=Lin%2C+Haoran&rft.au=Tan%2C+Tian&rft.au=Li%2C+Yue&rft.date=2025-10-09&rft.issn=2475-1421&rft.eissn=2475-1421&rft.volume=9&rft.issue=OOPSLA2&rft.spage=867&rft.epage=893&rft_id=info:doi/10.1145%2F3763081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3763081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon