A Proof that Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black–Scholes Partial Differential Equations

Artificial neural networks (ANNs) have very successfully been used in numerical simulations for a series of computational problems ranging from image classification/image recognition, speech recognition, time series analysis, game intelligence, and computational advertising to numerical approximatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Grohs, Philipp, Hornung, Fabian, Jentzen, Arnulf, von Wurstemberger, Philippe
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2023
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:147045632X, 9781470456320
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Artificial neural networks (ANNs) have very successfully been used in numerical simulations for a series of computational problems ranging from image classification/image recognition, speech recognition, time series analysis, game intelligence, and computational advertising to numerical approximations of partial differential equations (PDEs). Such numerical simulations suggest that ANNs have the capacity to very efficiently approximate high-dimensional functions and, especially, indicate that ANNs seem to admit the fundamental power to overcome the curse of dimensionality when approximating the high-dimensional functions appearing in the above named computational problems. There are a series of rigorous mathematical approximation results for ANNs in the scientific literature. Some of them prove convergence without convergence rates and some of these mathematical results even rigorously establish convergence rates but there are only a few special cases where mathematical results can rigorously explain the empirical success of ANNs when approximating high-dimensional functions. The key contribution of this article is to disclose that ANNs can efficiently approximate high-dimensional functions in the case of numerical approximations of Black-Scholes PDEs. More precisely, this work reveals that the number of required parameters of an ANN to approximate the solution of the Black-Scholes PDE grows at most polynomially in both the reciprocal of the prescribed approximation accuracy
AbstractList Artificial neural networks (ANNs) have very successfully been used in numerical simulations for a series of computational problems ranging from image classification/image recognition, speech recognition, time series analysis, game intelligence, and computational advertising to numerical approximations of partial differential equations (PDEs). Such numerical simulations suggest that ANNs have the capacity to very efficiently approximate high-dimensional functions and, especially, indicate that ANNs seem to admit the fundamental power to overcome the curse of dimensionality when approximating the high-dimensional functions appearing in the above named computational problems. There are a series of rigorous mathematical approximation results for ANNs in the scientific literature. Some of them prove convergence without convergence rates and some of these mathematical results even rigorously establish convergence rates but there are only a few special cases where mathematical results can rigorously explain the empirical success of ANNs when approximating high-dimensional functions. The key contribution of this article is to disclose that ANNs can efficiently approximate high-dimensional functions in the case of numerical approximations of Black-Scholes PDEs. More precisely, this work reveals that the number of required parameters of an ANN to approximate the solution of the Black-Scholes PDE grows at most polynomially in both the reciprocal of the prescribed approximation accuracy
View the abstract.
Author Hornung, Fabian
von Wurstemberger, Philippe
Grohs, Philipp
Jentzen, Arnulf
Author_xml – sequence: 1
  givenname: Philipp
  surname: Grohs
  fullname: Grohs, Philipp
– sequence: 2
  givenname: Fabian
  surname: Hornung
  fullname: Hornung, Fabian
– sequence: 3
  givenname: Arnulf
  surname: Jentzen
  fullname: Jentzen, Arnulf
– sequence: 4
  givenname: Philippe
  surname: von Wurstemberger
  fullname: von Wurstemberger, Philippe
BackLink https://cir.nii.ac.jp/crid/1130577729740291001$$DView record in CiNii
BookMark eNpVks9u1DAQxg1tEbtlD7xBJDiUQ-j4f3zcbheKVLWVQIhb5HVs1dokbuOkpbe-Q8-8HE-Ck90LF4-s-X3-ZsYzR4dtaC1C7zF8xqDgtLFNOMUMwyu0ULLATAKTjBX8NZphxWQuCMEHaD4luKDk1yGaAQieKyLEEZoTIBQwB8beJIoqoWgBBX6LFjH6DXDBKGGEztCfZXbTheCy_lb32bLrvfPG6zq7skM3hf4xdNuYXT_YzoTGJtBmq6GLNkuqc9_YNvrQ6tr3T5lvp_TV0NjOmyRf3t114bdvdJ-YUXBWa7P9-_zy3dyG2sbsRifLBJ5752xn2-myvh8mQXyHjpyuo13s4zH6-WX9Y3WRX15__bZaXuYac6z6nFaSuYprypwRVSVUURFJCgHSEc2Mw4I7R0WxUaKCDVSa80Kn4TBHDS-YoMfo0-5hHbf2Maba-lg-1HYTwjaW_31BYk92bGrtfrCxLyfMpOLTxMr12YoCpwpLSOjHHdp6Xxo_nhinrJSSKMmAKAyAE_Zh797Ecu-JoRxXoRxXoRxXgf4DdZSeIQ
CitedBy_id crossref_primary_10_1214_24_AAP2071
crossref_primary_10_2139_ssrn_3782722
crossref_primary_10_1007_s10958_023_06580_1
crossref_primary_10_1142_S021953052550006X
crossref_primary_10_1016_j_apenergy_2024_123874
crossref_primary_10_1109_ACCESS_2025_3529357
crossref_primary_10_1515_jnma_2024_0074
crossref_primary_10_1109_TNNLS_2021_3049719
crossref_primary_10_1016_j_jcp_2025_114273
crossref_primary_10_1111_mafi_12389
crossref_primary_10_1007_s10489_025_06669_x
crossref_primary_10_1016_j_neunet_2024_106223
crossref_primary_10_1111_mafi_12443
crossref_primary_10_3934_dcdss_2025061
ContentType eBook
Book
Copyright Copyright 2023 American Mathematical Society
Copyright_xml – notice: Copyright 2023 American Mathematical Society
DBID RYH
DEWEY 518/.64
DOI 10.1090/memo/1410
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781470474485
1470474484
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470474485
EBC30539170
BD02181080
10_1090_memo_1410
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
YNT
YQT
38.
AABBV
ABARN
ABQPQ
ADVEM
AEPJP
AERYV
AFOJC
AHWGJ
AJFER
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a1519t-3d74fd5a34fc6dd698d2728607f2a4cf165ff368b96d0b0da558a0444f3c58463
ISBN 147045632X
9781470456320
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991353000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Mon Jun 16 09:14:45 EDT 2025
Wed Dec 10 11:21:24 EST 2025
Fri Jun 27 00:24:21 EDT 2025
Thu Aug 14 15:25:17 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCN 2023015044
LCCallNum_Ident QA377 .G764 2023
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a1519t-3d74fd5a34fc6dd698d2728607f2a4cf165ff368b96d0b0da558a0444f3c58463
Notes April 2023, volume 284, number 1410 (sixth of 6 numbers)
Other authors: Fabian Hornung, Arnulf Jentzen, Philippe von Wurstemberger
Includes bibliographical references (p. 89-93)
OCLC 1396938081
PQID EBC30539170
PageCount 106
ParticipantIDs askewsholts_vlebooks_9781470474485
proquest_ebookcentral_EBC30539170
nii_cinii_1130577729740291001
ams_ebooks_10_1090_memo_1410
PublicationCentury 2000
PublicationDate ♭2023.
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: [2023]
PublicationDecade 2020
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, RI
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2023
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssib056432423
ssj0008047
ssib051361791
ssj0002865429
Score 2.7620068
Snippet Artificial neural networks (ANNs) have very successfully been used in numerical simulations for a series of computational problems ranging from image...
View the abstract.
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Approximation theory
Differential equations, Partial-Numerical solutions
Neural networks (Computer science)
Stochastic differential equations
TableOfContents Introduction -- Probabilistic and analytic preliminaries -- Artificial neural network approximations -- Artificial neural network approximations for Black-Scholes partial differential equations
Cover -- Title page -- Chapter 1. Introduction -- Acknowlegments -- Chapter 2. Probabilistic and analytic preliminaries -- 2.1. Monte Carlo approximations -- 2.2. Properties of affine functions -- 2.3. A priori estimates for solutions of stochastic differential equations -- 2.4. Stochastic differential equations with affine coefficient functions -- 2.5. Viscosity solutions for partial differential equations -- Chapter 3. Artificial neural network approximations -- 3.1. Construction of a realization on the artificial probability space -- 3.2. Approximation error estimates -- 3.3. Cost estimates -- 3.4. Representation properties for artificial neural networks -- 3.5. Cost estimates for artificial neural networks -- 3.6. Artificial neural networks with continuous activation functions -- Chapter 4. Artificial neural network approximations for Black-Scholes partial differential equations -- 4.1. Elementary properties of the Black-Scholes model -- 4.2. Transformations of viscosity solutions -- 4.3. Artificial neural network approximations for basket call options -- 4.4. Artificial neural network approximations for basket put options -- 4.5. Artificial neural network approximations for call on max options -- 4.6. Artificial neural network approximations for call on min options -- Bibliography -- Back Cover
Title A Proof that Artificial Neural Networks Overcome the Curse of Dimensionality in the Numerical Approximation of Black–Scholes Partial Differential Equations
URI https://www.ams.org/memo/1410/
https://cir.nii.ac.jp/crid/1130577729740291001
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=30539170
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470474485
Volume 284
WOSCitedRecordID wos000991353000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbawoGe-CkKGzKI2xQtaRw7Pm6jAwEaHMboLUpiZ0S0SWnaqoI_hX-W9xwnTbcD4sAlaRLbL837FH-23_tCyOtEc8wgGTtahcwBUAROmHLmJIFmksXQh5kV_KuP4uIinE7l517vV5MLs5mJogi3W7n4r66Gc-BsTJ39B3e3jcIJ-A1Ohy24HbY3GHF7aOONMdjKLPnDoB8RYcUhULLS7EzAd3WEQZtgWBvOmWIQBzJGhTL_tUQHEnMb_lis6xWdWS0-vs3nLcU0U38OqnjOdHW0QINmwaf-4Io50D_WnQlBE-VTfqt28ziLFlTlsrBvnfM46SD2PbT0s34znkCRWdZc2MBNfIV7X2n8osl1DTzbqu5OZYz9G1MZuzWqVrEWFVHKVhKlHfd6TCAV9U0e3e1ewJUYNjnX89LICdi42X1Z7dM3ht0AYe6TvuAwbr_zdvLpy4d2gg5TdqGzNsmA1tq00QhrrDdSVdI9RmvHaMtI9lZDMoyr79BPgRNWcNQv8vxWd284zOV9MsC8lgekp4uHZLj789Uj8vuEGuhQhA7dQYfW0KENdGgDHSioqYEOhVr70KF5YS630KF70MEKe9ChFjq0Cx3aQucxuTqfXJ69c-xXO5wY2KNcOb4SLFNB7LMs5UpxGaqxgKfpimwcszTzeJBlPg8TyZWbuCoOgjBG2cLMT5EO-0_IoCgL_ZTQhAUZlzrFWowrHsJoXqYwpPGkAiLqjcgBPOvIxBVUUR1P4UboighdMSKvOk6INjNbsPGhYCwMRuQQfBOlOW49oHSBwBGnYO5YokDZiLxsvFYbslHT0eT0DAr70hPus7-08Zzc2-H9gAxWy7U-JHfTzSqvli8s8v4AP8KkoQ
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=A+proof+that+artificial+neural+networks+overcome+the+curse+of+dimensionality+in+the+numerical+approximation+of+Black-Scholes+partial+differential+equations&rft.au=Grohs%2C+Philipp&rft.au=Hornung%2C+Fabian&rft.au=Jentzen%2C+Arnulf&rft.au=von+Wurstemberger%2C+Philippe&rft.date=2023-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470456320&rft_id=info:doi/10.1090%2Fmemo%2F1410&rft.externalDocID=BD02181080
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470474485.jpg