Optimum-Path Forest Theory, Algorithms, and Applications
The Optimum-Path Forest (OPF) classifier was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification.Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and bio...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | eBook |
| Language: | English |
| Published: |
Chantilly
Elsevier Science & Technology
2022
Academic Press |
| Edition: | 1 |
| Subjects: | |
| ISBN: | 9780128226889, 0128226889 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Optimum-Path Forest (OPF) classifier was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification.Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology. |
|---|---|
| AbstractList | The Optimum-Path Forest (OPF) classifier was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification.Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology. Optimum-Path Forest: Theory, Algorithms, and Applications was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image classification. Since then, it has expanded to a variety of other applications such as remote sensing, electrical and petroleum engineering, and biology. In recent years, multi-label and semi-supervised versions were also developed to handle video classification problems. The book presents the principles, algorithms and applications of Optimum-Path Forest, giving the theory and state-of-the-art as well as insights into future directions. |
| Author | Xavier Falcao, Alexandre Papa, João Paulo |
| Author_xml | – sequence: 1 fullname: Xavier Falcao, Alexandre – sequence: 2 fullname: Papa, João Paulo |
| BookMark | eNpVz81KAzEUBeCIP2jrrHwBd-JiIMlNbpKlDq0KhXZR3A6ZSUJLp5M6SfX1Haybri4HPg7nTshVH3t_QQqjNGVcc47a4OVZ1uaGTBg3DFBLI29JkdK2oUJJYELKO_KwPOTt_rgvVzZvHudx8Cnfk-tgu-SL_zsln_PZunovF8u3j-plUVomkOnSY8sdFY6Bkw6DCkx4CegCo6harsABWkFbE8BSDRSZpQEob8C0QTUGpuT5VGzTzv-kTexyqr8738S4S_XZW6N9OtnDEL-O48r6j7W-z4Pt6tlrhVpIHOUvo91Kvw |
| ContentType | eBook |
| DEWEY | 006.4 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 9780128226896 0128226897 |
| Edition | 1 |
| ExternalDocumentID | 9780128226896 EBC6845696 |
| GroupedDBID | AAAAS AABBV AAKGN AAKJW AALRI AANYM AAVWF AAWMN AAXUO AAZGR ABGWT ABIWA ABLXK ABQQC ABRSK ABSYO ACDGK ADBND ADOAR AECLD AEHEP AEYWH AFNOJ AFQEX ALMA_UNASSIGNED_HOLDINGS ALOLN APVFW ATDNW BBABE BSWCA CETPU E2F HGY L7C SDK SRW UE6 ADDBX ALBLE O7H |
| ID | FETCH-LOGICAL-a14618-e6c2d04d13d5d6f7f14e536df1067c273d36a40c9f3a083061a0f302b39cf7b93 |
| ISBN | 9780128226889 0128226889 |
| IngestDate | Fri Nov 08 03:52:16 EST 2024 Wed Sep 10 04:40:57 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum_Ident | TK7882.P3 .O685 2022 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a14618-e6c2d04d13d5d6f7f14e536df1067c273d36a40c9f3a083061a0f302b39cf7b93 |
| OCLC | 1291368595 |
| PQID | EBC6845696 |
| PageCount | 246 |
| ParticipantIDs | askewsholts_vlebooks_9780128226896 proquest_ebookcentral_EBC6845696 |
| PublicationCentury | 2000 |
| PublicationDate | 2022 2022-01-06 |
| PublicationDateYYYYMMDD | 2022-01-01 2022-01-06 |
| PublicationDate_xml | – year: 2022 text: 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Chantilly |
| PublicationPlace_xml | – name: Chantilly |
| PublicationYear | 2022 |
| Publisher | Elsevier Science & Technology Academic Press |
| Publisher_xml | – name: Elsevier Science & Technology – name: Academic Press |
| SSID | ssib047531455 ssj0003150347 |
| Score | 2.3817089 |
| Snippet | The Optimum-Path Forest (OPF) classifier was first published in 2008 in its supervised and unsupervised versions with applications in medicine and image... Optimum-Path Forest: Theory, Algorithms, and Applications was first published in 2008 in its supervised and unsupervised versions with applications in medicine... |
| SourceID | askewsholts proquest |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Image processing Pattern recognition systems |
| Subtitle | Theory, Algorithms, and Applications |
| TableOfContents | 6.2.2.5 Optimum-path forest based on k-connectivity -- 6.3 Methodology -- 6.3.1 Data set -- 6.3.2 Features set -- 6.3.3 Metrics -- 6.3.4 Experimental setup -- 6.4 Experimental results -- 6.4.1 Classification -- 6.4.2 Statistical analysis -- 6.4.3 Computational burden -- 6.5 Conclusions and future works -- References -- 7 Learning to weight similarity measures with Siamese networks: a case study on optimum-path forest -- 7.1 Introduction -- 7.2 Theoretical background -- 7.2.1 Optimum-path forest -- Training step -- Testing step -- 7.2.2 Siamese networks -- 7.3 Methodology -- 7.3.1 Proposed approach -- 7.3.2 Data sets -- 7.3.3 Experimental setup -- 7.4 Experimental results -- 7.4.1 BBC News -- 7.4.2 Caltech101 Silhouettes -- 7.4.3 MPEG-7 -- 7.4.4 Semeion -- 7.5 Conclusion -- References -- 8 An iterative optimum-path forest framework for clustering -- 8.1 Introduction -- 8.2 Related work -- 8.3 The iterative optimum-path forest framework -- 8.3.1 Seed set selection -- 8.3.2 Clustering by optimum-path forest -- 8.3.3 Seed recomputation -- 8.3.4 Returning the forest with lowest total path-cost -- 8.3.5 Algorithm outline -- 8.3.6 Application to object delineation -- 8.4 Experimental results -- 8.4.1 Object delineation by iterative dynamic trees -- 8.4.2 Analysis on road networks -- 8.4.3 Experiments on synthetic data sets -- 8.5 Conclusions and future work -- Acknowledgments -- References -- 9 Future trends in optimum-path forest classification -- References -- Index -- Back Cover Front Cover -- Optimum-Path Forest -- Copyright -- Dedication -- Contents -- List of contributors -- Biography of the editors -- Preface -- 1 Introduction -- References -- 2 Theoretical background and related works -- 2.1 Introduction -- 2.2 The optimum-path forest framework -- 2.2.1 Theoretical background -- 2.2.2 Supervised learning -- 2.2.2.1 OPF using complete graph -- 2.2.2.2 OPF using k-nn graph -- 2.2.3 Semisupervised learning -- 2.2.4 Unsupervised learning -- 2.3 Applications -- 2.3.1 Supervised -- 2.3.1.1 Improvements in training -- 2.3.1.2 Improvements in classification -- 2.3.1.3 Variations in learning -- 2.3.1.4 Biological sciences -- 2.3.1.5 Biometrics -- 2.3.1.6 Electrical engineering -- 2.3.1.7 Geosciences and remote sensing -- 2.3.1.8 Image and video analysis -- 2.3.1.9 Materials engineering -- 2.3.1.10 Medicine -- 2.3.1.11 Network security -- 2.3.1.12 Feature selection -- 2.3.1.13 Petroleum exploration -- 2.3.1.14 Other applications -- 2.3.1.15 Voice recognition -- 2.3.2 Semisupervised -- 2.3.3 Unsupervised -- 2.3.3.1 Electrical engineering -- 2.3.3.2 Image and video processing -- 2.3.3.3 Medicine -- 2.3.3.4 Network security -- 2.3.3.5 Remote sensing images -- 2.3.3.6 Other applications -- 2.4 Conclusions and future trends -- Acknowledgments -- References -- 3 Real-time application of OPF-based classifier in Snort IDS -- 3.1 Introduction -- 3.2 Intrusion detection systems -- 3.2.1 Detection approaches in IDS -- 3.2.2 Anomaly detection techniques -- 3.2.3 Types of IDS -- 3.2.4 Open source IDS -- 3.2.4.1 Snort -- 3.3 Machine learning -- 3.3.1 Learning methods -- 3.3.2 Algorithms -- 3.3.2.1 Optimum-path forest -- 3.3.3 Metrics for effectiveness analysis -- 3.4 Methodology -- 3.4.1 CICIDS2017 data set -- 3.4.2 Data set balancing -- 3.4.3 ml_classifiers plugin -- 3.4.3.1 Network traffic flow management 3.4.3.2 Classification of network traffic flows -- 3.4.3.3 Plugin configuration -- 3.5 Experiments and results -- 3.5.1 First stage of experiments -- 3.5.1.1 Naive Bayes -- 3.5.1.2 Decision tree -- 3.5.1.3 Random forests -- 3.5.1.4 Support vector machine -- 3.5.1.5 Optimum-path forest -- 3.5.1.6 AdaBoost -- 3.5.1.7 Comparison of classification techniques -- 3.5.2 Second stage of experiments -- 3.5.2.1 DoS slowloris -- 3.5.2.2 DoS SlowHTTPTest -- 3.5.2.3 DoS hulk -- 3.5.2.4 Port scan -- 3.5.2.5 SSH brute force -- 3.6 Final considerations -- 3.6.1 Future works -- Acknowledgments -- References -- 4 Optimum-path forest and active learning approaches for content-based medical image retrieval -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Active learning strategy -- 4.3 Experiments -- 4.3.1 Results and discussion -- 4.4 Conclusion -- 4.5 Funding and acknowledgments -- References -- 5 Hybrid and modified OPFs for intrusion detection systems and large-scale problems -- 5.1 Introduction -- 5.2 Modified OPF-based IDS using unsupervised learning and social network concept -- 5.3 Hybrid IDS using unsupervised OPF based on MapReduce approach -- 5.4 Hybrid IDS using modified OPF and selected features -- 5.5 Modified OPF using Markov cluster process algorithm -- 5.6 Modified OPF based on coreset concept -- 5.6.1 Partitioning step -- 5.6.2 Sampling step -- 5.7 Enhancement of MOPF using k-medoids algorithm -- References -- 6 Detecting atherosclerotic plaque calcifications of the carotid artery through optimum-path forest -- 6.1 Introduction -- 6.2 Theoretical background -- 6.2.1 Computer-aided diagnosis of atherosclerotic lesions -- 6.2.2 Optimum-path forest -- 6.2.2.1 Optimum-path forest classifier -- 6.2.2.2 Probabilistic optimum-path forest -- 6.2.2.3 Optimum-path forest-based approach for anomaly detection -- 6.2.2.4 Fuzzy optimum-path forest |
| Title | Optimum-Path Forest |
| URI | https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6845696 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780128226896 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5By0AX3qK8FCE2iBRiJ7HZSnlJIGBAqFvlODZUlAQlKeLnc07SNMACA4uV2JKH71N8X-7OdwAHgjHuRIG2uTBhRko9W2jh2yFBeSKpQ6QoSubfBLe3bDDg91XPuaxoJxDEMfv44G__SjXOIdnm6uwf6K43xQl8RtJxRNpx_KaI69eS8Tv8-l8nr_Y9irpD03Izy6uciqSMlffGT0k6yp9L74rxmPca4euaSTGWonn5JVWHA2HM5yzc9FZm2CYiKVILk6bvwHUL34E_Y7tOwW-ke5R_lsZuoTJj_Fud6mTaCKFen4e2Sz1CW9Du9c8ur2sPF0GtSUzbmo7IXvDExtM8z36YvMKOPyxDW5nLHSswp-JVWJq2tLCqE24VOo36jGvAm5BaJaQnVgnokTWD88hCmKwmmOvweHH-0L-yq14TtjCdzZmtfOlGDo2OSeRFvg70MVUe8SNtauxJFHkR8QV1JNdEoGxFGSQcTRw3JFzqIORkA1pxEqtNsBwaBhJlUkBDRT1BmVaaSOVqzmikPNWF_QYiw_dxERfPhl9g7YI1BWpYrFfJusPz077PUPZyf-s3-2zD4oz5HWjl6UTtwoJ8z0dZuldx9gl5jSPc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Optimum-Path+Forest%3A+Theory%2C+Algorithms%2C+and+Applications&rft.au=Falcao%2C+Alexandre+Xavier&rft.au=Papa%2C+Joao+Paulo&rft.date=2022-01-06&rft.pub=Academic+Press&rft.isbn=9780128226896&rft.externalDocID=9780128226896 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801282%2F9780128226896.jpg |

