Energy Materials - Structure, Properties and Applications
This book presents the latest progress in energy materials, energy storage, batteries, and supercapacitors. The contents include topics such as fundamentals of energy materials, photovoltaic materials and devices, electrochemical energy conversion and storage, and lighting and light-emitting diodes....
Uložené v:
| Hlavný autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
Springer Nature
2023
Springer Springer Nature Singapore |
| Vydanie: | 1 |
| Edícia: | Materials Horizons: From Nature to Nanomaterials |
| Predmet: | |
| ISBN: | 9789819938650, 9819938651 |
| ISSN: | 2524-5384, 2524-5392 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Obsah:
- Title Page Preface Table of Contents 1. Proton Conductors: Physics and Technological Advancements for PC-SOFC 2. Transition Metal Nitrides as Energy Storage Materials 3. Electrode Materials in Lithium-Ion Batteries 4. State-of-the-Art of Dye-Sensitized Solar Cells 5. Fabrication and Characterization of Silicon Nanowire Hybrid Solar Cells 6. Proton Mobility in Solid Electrolyte: The Heart of Fuel Cell 7. Perovskite Manganite Materials: Recent Advancements and Challenges as Cathode for Solid Oxide Fuel Cell Applications 8. Silicon Nanowires/Graphene Oxide Heterojunction for Photovoltaics Application 9. Energy Conversion Materials: An Electrolyte for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) Applications 10. Graphene-Based Materials in Energy Harvesting 11. Cathode Materials in Lithium Ion Batteries as Energy Storage Devices
- Intro -- Preface -- Contents -- About the Editor -- 1 Proton Conductors: Physics and Technological Advancements for PC-SOFC -- 1 Introduction -- 1.1 Technological Prospects of Proton Conductors -- 1.2 Electrochemistry in Fuel Cell Technology -- 1.3 SOFC System and Technology -- 1.4 Foundation of PC-SOFC -- 2 Charge Transport Features in Proton Conductors -- 2.1 Standalone and Acceptor-Doped BaCeO3 PCs -- 2.2 Standalone and Acceptor-Doped BaZrO3 PCs -- 2.3 Structural Perspective of BaCeO3 and BaZrO3 -- 2.4 Chemical Attributes of Pure and Derived BaCeO3 and BaZrO3 PCs -- 2.5 Electrical Essence of Pure and Derived BaCeO3 and BaZrO3 PCs -- 2.6 Microstructural Viewpoint of BaCeO3 and BaZrO3 PCs -- 3 Limiting Characteristics of PCs -- 3.1 Higher Doping Strategy -- 3.2 Thin-Film Electrolytes and Buffer Layer -- 3.3 Metal-Organic Framework -- 4 Future Research Directions -- 5 Conclusion -- References -- 2 Transition Metal Nitrides as Energy Storage Materials -- 1 Introduction -- 2 Structural and Physical Properties of TMNs -- 3 Synthesis Methods of Metal Nitrides -- 4 Applications of TMNs in Energy Storage Devices -- 4.1 Transition Metal Nitrides for Lithium-Ion Batteries -- 4.2 Transition Metal Nitrides in Sodium-Ion Batteries -- 4.3 Transition Metal Nitrides in Supercapacitor -- 5 Conclusion -- References -- 3 Electrode Materials in Lithium-Ion Batteries -- 1 Introduction -- 2 Lithium Iron Phosphate (LFP) -- 3 Nickel Manganese Cobalt (NMC/NCM) Oxides -- 4 Drawbacks Due to Excessive Ions -- 5 Structural Stability -- 6 Effect of Doping -- 7 Delithiation -- 8 Coating Cathode Materials -- 9 Lithium Cobalt Oxide (LCO) -- 10 Nickel Cobalt Aluminium Oxides (NCA) -- 11 Lithium Manganese Oxide (LMO) -- 12 Cathode Materials for EVs -- 13 Li and Mn Layered Structures -- 14 Summary -- References -- 4 State-of-the-Art of Dye-Sensitized Solar Cells -- 1 Introduction
- 3.3 Olivine Compounds with the General Formula LiMPO4 (M is a Metal Atom) -- 3.4 Silicate Compounds with the General Formula Li2MSiO4 (M is a Metal Atom) -- 3.5 Tavorite Compounds with the General Formula LiMPO4F (M is a Metal Atom) -- 3.6 Borate Compounds with the General Formula LiBO3 (M is a Metal Atom) -- 3.7 Conclusion -- References
- 2 Insight into DSSC (Efficiency Determining Parameters, DSSC Parts, and Working Mechanism) -- 2.1 Efficiency Determining Parameters -- 2.2 DSSC Parts and Working Mechanism -- 3 State-of-the-Art of DSSC Parts -- 3.1 Substrate -- 3.2 Semiconductor Metal Oxide Materials Layer -- 3.3 Photosensitizer (Dye) -- 3.4 Electrolyte (HTM) -- 3.5 Counter Electrode (CE) -- 4 Conclusions -- References -- 5 Fabrication and Characterization of Silicon Nanowire Hybrid Solar Cells -- 1 Introduction -- 1.1 Fundamentals of Solar Cell -- 1.2 Solar Spectrum -- 1.3 Limitation to the Theoretical Efficiency of Solar Cell -- 1.4 The Basic Principle of SiNWs Hybrid Solar Cell -- 1.5 Recombination Losses -- 1.6 SiNWs Hybrid Solar Cells -- 1.7 Required Materials for SiNWs Hybrid Solar Cell -- 2 Synthesis of SiNWs by Electroless Metal-Assisted Chemical Etching Method -- 2.1 Morphological Characterization of SiNWs by SEM -- 3 Chemical Synthesis of Reduced Graphene Oxide (rGO) -- 3.1 Morphological Characterization of rGO Sheet Using SEM -- 3.2 Structural Characterization of rGO Using XRD and Raman Characterization -- 4 Fabrication of SiNWs Hybrid Solar Cell -- 4.1 J-V Characterization of SiNWs Hybrid Solar Cells -- 4.2 Effect of rGO Incorporation in PEDOT:PSS as the Hole Transport Layer in SiNWs/Organic Hybrid Solar Cell -- 5 Conclusion -- References -- 6 Proton Mobility in Solid Electrolyte: The Heart of Fuel Cell -- 1 Introduction -- 2 Operating Principles of Fuel Cell -- 3 Fuel Oxidation -- 3.1 Ions Formation -- 3.2 The Fuel Cell Potential -- 3.3 Standard Potential -- 4 Electrolyte: The Core of Fuel Cells -- 4.1 Oxide Ions Conductors -- 4.2 Proton Conductors -- 5 Protonic Defects in Perovskite -- 5.1 Diffusion Mechanism in Solid Electrolyte -- 5.2 The Vehicle Mechanism -- 5.3 The Grotthuss Mechanism -- 6 Concluding Remarks -- References
- 7 Perovskite Manganite Materials: Recent Advancements and Challenges as Cathode for Solid Oxide Fuel Cell Applications -- 1 Introduction -- 2 Synthesis and Structural Phase Purity of LSM Materials -- 3 Electrical, Thermal and Compatibility Properties of LSM as Cathode Materials -- 4 Other Cathode Materials for SOFC Applications -- 5 Effect of Porosity on LSM and Other Cathode Materials -- 6 Conclusions -- References -- 8 Silicon Nanowires/Graphene Oxide Heterojunction for Photovoltaics Application -- 1 Introduction -- 1.1 Dimensions of Nanomaterials -- 1.2 Classification of Heterojunctions Based on the Dimension -- 1.3 Density of States -- 1.4 Current Scenario of Energy in the World -- 1.5 Solar Energy -- 1.6 Silicon Nanowires -- 1.7 Graphene Oxide -- 1.8 Recent Status of SiNWs and Graphene Heterojunction -- 2 Conclusion -- References -- 9 Energy Conversion Materials: An Electrolyte for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) Applications -- 1 Introduction -- 2 Classification of Fuel Cells -- 3 Synthesis Method -- 4 Doped Ceria Electrolyte Materials -- 5 Doped Ceria-Based Composite Materials -- 6 Electrical Conductivity -- 7 Electrolyte-Free Fuel Cell (EFFC) or Single-Component Cell -- 8 Conclusions -- References -- 10 Graphene-Based Materials in Energy Harvesting -- 1 Introduction -- 2 Graphene-Based Materials in Energy Harvesting and Storage -- 2.1 Supercapacitors -- 2.2 Batteries -- 2.3 Fuel Cells -- 2.4 Solar Cells -- 3 Challenges and Opportunities -- 4 Conclusions -- References -- 11 Cathode Materials in Lithium Ion Batteries as Energy Storage Devices -- 1 Introduction -- 2 Working Principle of Li Ion Batteries -- 3 Cathode Materials in LiBs -- 3.1 Layered Compounds with General Formula LiMO2 (M is a Metal Atom) -- 3.2 Layered Spinel Compounds with General Formula LiM2O4 (M is a Metal Atom)

