On the Complexity of Target Set Selection in Simple Geometric Networks

We study the following model of disease spread in a social network. At first, all individuals are either infected or healthy. Next, in discrete rounds, the disease spreads in the network from infected to healthy individuals such that a healthy individual gets infected if and only if a sufficient num...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org
Hlavní autoři: Dvořák, Michal, Knop, Dušan, Šimon Schierreich
Médium: Paper
Jazyk:angličtina
Vydáno: Ithaca Cornell University Library, arXiv.org 04.07.2024
Témata:
ISSN:2331-8422
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the following model of disease spread in a social network. At first, all individuals are either infected or healthy. Next, in discrete rounds, the disease spreads in the network from infected to healthy individuals such that a healthy individual gets infected if and only if a sufficient number of its direct neighbors are already infected. We represent the social network as a graph. Inspired by the real-world restrictions in the current epidemic, especially by social and physical distancing requirements, we restrict ourselves to networks that can be represented as geometric intersection graphs. We show that finding a minimal vertex set of initially infected individuals to spread the disease in the whole network is computationally hard, already on unit disk graphs. Hence, to provide some algorithmic results, we focus ourselves on simpler geometric graph classes, such as interval graphs and grid graphs.
Bibliografie:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2307.06976