Machine Learning under Resource Constraints - Fundamentals

Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data a...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Katharina Morik, Peter Marwedel, Katharina Morik, Peter Marwedel, Jens Buß, Andreas Becker
Médium: E-kniha
Jazyk:English
Vydavateľské údaje: Berlin/Boston De Gruyter 2022
Walter de Gruyter GmbH
Vydanie:1
Predmet:
ISBN:9783110786125, 3110786125
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to the different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Several machine learning methods are inspected with respect to their resource requirements and how to enhance their scalability on diverse computing architectures ranging from embedded systems to large computing clusters.
AbstractList Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to the different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Several machine learning methods are inspected with respect to their resource requirements and how to enhance their scalability on diverse computing architectures ranging from embedded systems to large computing clusters.
Author Katharina Morik, Peter Marwedel, Katharina Morik, Peter Marwedel, Jens Buß, Andreas Becker
Author_xml – sequence: 1
  fullname: Katharina Morik, Peter Marwedel, Katharina Morik, Peter Marwedel, Jens Buß, Andreas Becker
BookMark eNotj01LxDAYhCN-oF37Dzzk5qmQ9E2axpuWXRUqgojXkqZv12pNNGn_vy27p2GYh2EmIWfOOzwhCXDOVCm1gFOSalUefMFzeUESDlIxLnkpLkka4xdjDHIQDOQVuXsx9nNwSGs0wQ1uT2fXYaBvGP0cLNLKuzgFM7gp0ozultT8oJvMGK_Jeb8IpkfdkI_d9r16yurXx-fqvs4MByWKTOvSytzkvUGFBRRti1LkrMyh7zhrlW3Fut0WWFhjmcaOWyV7pjoueGsBNuT2UPwb_N-McWqw9f7bLjOCGZvtQ6W4XL8u5M2RxDDi3jcrFxtQWgul4B9rAFSN
ContentType eBook
DBID YSPEL
DEWEY 006.31
DatabaseName Perlego
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3110785943
9783110785944
Edition 1
ExternalDocumentID EBC7156125
3799477
Genre Electronic books
GroupedDBID A7I
ALMA_UNASSIGNED_HOLDINGS
I4C
V1H
YSPEL
ID FETCH-LOGICAL-a13746-998c52a2fae7e636bbe5420823fd10b7cb40785c6e6cac09ed1c75f07d141bc33
ISBN 9783110786125
3110786125
IngestDate Wed Apr 23 01:02:02 EDT 2025
Tue Dec 02 16:48:41 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a13746-998c52a2fae7e636bbe5420823fd10b7cb40785c6e6cac09ed1c75f07d141bc33
OCLC 1357015184
PQID EBC7156125
PageCount 505 pages
ParticipantIDs proquest_ebookcentral_EBC7156125
perlego_books_3799477
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Berlin/Boston
PublicationPlace_xml – name: Berlin/Boston
PublicationYear 2022
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
SSID ssj0003234035
Score 2.3355799
Snippet Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by...
SourceID proquest
perlego
SourceType Publisher
SubjectTerms COMPUTERS
TableOfContents Intro -- Contents -- Preface -- 1 Introduction -- Data Gathering and Resource Measuring -- 3 Streaming Data, Small Devices -- 4 Structured Data -- 5 Cluster Analysis -- 6 Hardware-Aware Execution -- 7 Memory Awareness -- 8 Communication Awareness -- 9 Energy Awareness -- Bibliography -- Index -- List of Contributors
Title Machine Learning under Resource Constraints - Fundamentals
URI https://www.perlego.com/book/3799477/machine-learning-under-resource-constraints-fundamentals-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=7156125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFA6u4Mkdx40cxMsQaJO2ab2puIGKB1FvQ5q-iqidsZ1x-fe-ZNKOjgfx4CWkoeTwvUeSt36E7MRxlKucA0MDKGWoIcDSXANTQnsaDY5M2zrum3N5eRnf3SVXjr21snQCsiji9_ek96-ixjUUtimd_YO4m01xAecodBxR7DiOvYibT0fIZPMioW6Zem8pbsvGQW-5OS0jRL9qs_axKQEZdvZvntUX3fLhsc6xQCO6aM7sC1W-QTaM6I9Sep23gPMxb8GtjcG3M9TAcvBhpifP6ek3m1IYizAOk2FbxrFm1EcHh9I3hJrhbu-FGe4uE-N2RCaTZNrEcY0JvC_PGk-X4CLwDJ3ebA_KJ7jv_rj27F1-vUCmwRR4LJIJKJbIfE1rQd0pt0z2HJC0BpJaIGkNJP0CJGX0K5Ar5Ob46PrwlDmKCaZ8IYOIobWpQ654rkBCJKI0hdBkHHCRZ76XSp2aQGeoI4i00l4Cma9lmHsy8wM_1UKskqmiW8AaoVolQiVS4xNcB4HQSkEWBLgxxzNOcL9FVhwAHaMfVUfIJAmkbBFaw9GxEXKXltsZgb3--y8bZG4k700y1S8HsEVm9Gv_oSq3rUQ-Ae9GH_c
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Machine+Learning+under+Resource+Constraints+-+Fundamentals&rft.au=Morik%2C+Katharina&rft.au=Marwedel%2C+Peter&rft.date=2022-01-01&rft.pub=Walter+de+Gruyter+GmbH&rft.isbn=9783110785944&rft.externalDocID=EBC7156125
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fde_gruyter_frmluoo%2F9783110786125.jpg