Fundamentals of optimization techniques with algorithms
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
London
Academic Press
2020
Elsevier Science & Technology |
| Vydání: | 1 |
| Témata: | |
| ISBN: | 0128211261, 9780128211267 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Author | Nayak, Sukanta |
|---|---|
| Author_xml | – sequence: 1 fullname: Nayak, Sukanta |
| BackLink | https://cir.nii.ac.jp/crid/1130849382736479232$$DView record in CiNii |
| BookMark | eNotjk9PAjEQxWsUoyDfYWNMPBXnz263PSoBNSHxYrySthSpwhbZJSZ-eot4mZmX9-bl1xdnTWqCENcIIwRUdw-m1hIkktSESErWIwBAlNWJGGYPkDRRaYhORf9PHFLYE30CAlMhm-pc9BENIxmo4UIM2_Yjd1BlqKbyUtTTfbOwm9B0dt0WaVmkbRc38cd2MTVFF_yqiV_70BbfsVsVdv2edvnYtFeit8wfYfi_B-JtOnkdP8nZy-Pz-H4mLbLiSnrt2LJxZfA-lA6sRWIVWHNYOlN5cuwMZhoPNrteLRQusFSKHRnlgQfi9li83aUDSDcPLqVPn4l3dj2fPIwVo9Za5eTNMdnEOPfxMBEZdGlYU82qrA0x8S937F4i |
| ContentType | eBook Book |
| DBID | RYH |
| DEWEY | 519.6 |
| DOI | 10.1016/B978-0-12-821126-7.00011-5 |
| DatabaseName | CiNii Complete |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Applied Sciences Computer Science |
| EISBN | 9780128224922 0128224924 |
| Edition | 1 |
| ExternalDocumentID | EBC6318886 BC02006913 |
| GroupedDBID | 38. AAAAS AABBV AAIWD AAKJW AAKZG AALRI AAWMN AAXUO ABGWT ABLXK ABQQC ACDGK AEYWH ALMA_UNASSIGNED_HOLDINGS ALOLN APVFW BBABE BGHEG CZZ HGY RYH SDK SRW AANYM |
| ID | FETCH-LOGICAL-a13635-c8b3a39b4ecce4b0aa1236e383efb95c2b3b91592c0ab0ac6d61d14663b296c03 |
| ISBN | 0128211261 9780128211267 |
| IngestDate | Fri May 30 22:25:37 EDT 2025 Thu Jun 26 23:59:49 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2020951395 |
| LCCallNum_Ident | QA76.9.A43 .N393 2020 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a13635-c8b3a39b4ecce4b0aa1236e383efb95c2b3b91592c0ab0ac6d61d14663b296c03 |
| Notes | Includes bibliographical references and index |
| OCLC | 1193129070 |
| PQID | EBC6318886 |
| PageCount | 323 |
| ParticipantIDs | proquest_ebookcentral_EBC6318886 nii_cinii_1130849382736479232 |
| PublicationCentury | 2000 |
| PublicationDate | 2020 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Chantilly |
| PublicationYear | 2020 |
| Publisher | Academic Press Elsevier Science & Technology |
| Publisher_xml | – name: Academic Press – name: Elsevier Science & Technology |
| SSID | ssj0002592724 ssib041216035 |
| Score | 2.3092794 |
| SourceID | proquest nii |
| SourceType | Publisher |
| SubjectTerms | Computer algorithms Computer algorithms. fast (OCoLC)fst00872010 Mathematical optimization Mathematical optimization. fast (OCoLC)fst01012099 |
| TableOfContents | 9.5 Lexicographic model -- 9.6 Goal programming method -- 9.6.1 Practice set -- Further reading -- 10. Nature-inspired optimization -- 10.1 Genetic algorithm -- 10.1.1 Genetic operations on binary strings -- 10.1.1.1 Selection -- 10.1.1.2 Crossover -- 10.1.1.3 Mutation -- 10.1.2 Analysis of GA -- 10.2 Neural network-based optimization -- 10.2.1 Architecture of ANN -- 10.2.2 Paradigms of learning -- 10.2.3 Learning processes -- 10.2.4 Activation functions -- 10.2.5 Applications of ANN in optimization -- 10.3 Ant colony optimization -- 10.4 Particle swarm optimization -- Further reading -- Index -- Back Cover 4.2 Unidirectional search method -- 4.3 Evolutionary search method -- 4.3.1 Box's evolutionary optimization method -- 4.4 Simplex search method -- 4.5 Hooke-Jeeves pattern search method -- 4.5.1 Exploratory move -- 4.5.2 Pattern move -- 4.6 Conjugate direction method -- 4.6.1 Parallel subspace property -- 4.6.2 Extended parallel subspace property -- 4.7 Steepest descent method -- 4.7.1 Cauchy's (steepest descent) method -- 4.8 Newton's method -- 4.9 Marquardt's method -- Practice set -- Further reading -- 5. Multivariable constrained nonlinear optimization -- 5.1 Classical methods for equality constrained optimization -- 5.1.1 Solution by direct substitution -- 5.1.2 Solution by the method of constrained variation -- 5.1.3 Solution by the method of Lagrange multipliers -- 5.1.3.1 Necessary conditions -- 5.1.3.2 Sufficient condition -- 5.2 Classical methods for inequality constrained optimization -- 5.3 Random search method -- 5.4 Complex method -- 5.4.1 Iterative procedure -- 5.5 Sequential linear programming -- 5.6 Zoutendijk's method of feasible directions -- 5.7 Sequential quadratic programming -- 5.7.1 Derivation -- 5.7.2 Solution procedure -- 5.8 Penalty function method -- 5.9 Interior penalty function method -- 5.10 Convex programming problem -- 5.11 Exterior penalty function method -- Practice set -- Further reading -- 6. Geometric programming -- 6.1 Posynomial -- 6.2 Unconstrained geometric programming program -- 6.2.1 Arithmetic-geometric inequality -- 6.2.2 Primal-dual relationship and sufficiency conditions in the unconstrained case -- 6.2.3 Primal and dual problems -- 6.2.4 Computational procedure -- 6.3 Constrained optimization -- 6.3.1 Solution of a constrained geometric programming problem -- 6.3.2 Optimum design variables -- 6.3.3 Primal and dual programs in the case of less-than inequalities Front Cover -- Fundamentals of Optimization Techniques With Algorithms -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- 1. Introduction to optimization -- 1.1 Optimal problem formulation -- 1.1.1 Design variables -- 1.1.2 Constraints -- 1.1.3 Objective function -- 1.1.4 Variable bounds -- 1.2 Engineering applications of optimization -- 1.3 Optimization techniques -- Further reading -- 2. Linear programming -- 2.1 Formulation of the problem -- Practice set 2.1 -- 2.2 Graphical method -- 2.2.1 Working procedure -- Practice set 2.2 -- 2.3 General LPP -- 2.3.1 Canonical and standard forms of LPP -- Practice set 2.3 -- 2.4 Simplex method -- 2.4.1 Reduction of feasible solution to a basic feasible solution -- 2.4.2 Working procedure of the simplex method -- Practice set 2.4 -- 2.5 Artificial variable techniques -- 2.5.1 Big M method -- 2.5.2 Two-phase method -- Practice set 2.5 -- 2.6 Duality Principle -- 2.6.1 Formulation of a dual problem -- 2.6.1.1 Formulation of a dual problem when the primal has equality constraints -- 2.6.1.2 Duality principle -- Practice set 2.6 -- 2.7 Dual simplex method -- 2.7.1 Working procedure for a dual simplex method -- Practice set 2.7 -- Further reading -- 3. Single-variable nonlinear optimization -- 3.1 Classical method for single-variable optimization -- 3.2 Exhaustive search method -- 3.3 Bounding phase method -- 3.4 Interval halving method -- 3.5 Fibonacci search method -- 3.6 Golden section search method -- 3.7 Bisection method -- 3.8 Newton-Raphson method -- 3.9 Secant method -- 3.10 Successive quadratic point estimation method -- Further reading -- 4. Multivariable unconstrained nonlinear optimization -- 4.1 Classical method for multivariable optimization -- 4.1.1 Definition: rth differential of a function f(X) -- 4.1.2 Necessary condition -- 4.1.3 Sufficient condition 6.4 Geometric programming with mixed inequality constraints -- Practice set -- Further reading -- 7. Dynamic programming -- 7.1 Characteristics of dynamic programming -- 7.2 Terminologies -- 7.3 Developing optimal decision policy -- 7.4 Multiplicative separable return function and single additive constraint -- 7.5 Additive separable return function and single additive constraint -- 7.6 Additively separable return function and single multiplicative constraint -- 7.7 Dynamic programming approach for solving a linear programming problem -- 7.8 Types of multilevel decision problem -- 7.8.1 Concept of suboptimization and the principle of optimality -- 7.8.2 Formulation of water tank optimization problem into a dynamic programming problem and the solution procedure -- 7.8.3 Procedure -- Practice set -- Further reading -- 8. Integer programming -- 8.1 Integer linear programming -- 8.1.1 Types of integer programming problems -- 8.1.2 Enumeration and concept of cutting plane solution -- 8.1.3 Gomory's all integer cutting plane method -- 8.1.3.1 Method for constructing additional constraint (cut) -- 8.1.3.2 Procedure -- 8.1.3.3 Steps of Gomory's all integer programming algorithm -- 8.1.4 Gomory's mixed-integer cutting plane method -- 8.1.4.1 Method for constructing additional constraint (cut) -- 8.1.5 Branch and bound method -- 8.1.5.1 Procedure -- 8.1.6 Applications of zero-one integer programming -- 8.2 Integer nonlinear programming -- 8.2.1 Representation of an integer variable by an equivalent system of binary variables -- Practice set -- Further reading -- 9. Multiobjective optimization -- 9.1 Global criterion method -- 9.1.1 Methods for a priori articulation information given -- 9.2 Utility function method -- 9.3 Inverted utility method -- 9.4 Bounded objective function method -- 9.4.1 Methods for mixed ordinal and cardinal information given |
| Title | Fundamentals of optimization techniques with algorithms |
| URI | https://cir.nii.ac.jp/crid/1130849382736479232 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6318886 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwEA86fdAnP3HqpA--SbBJ2nw8ujkVhOHDkL2NJGulTDvZpsz_3kvbtWUq4oNQQpKWpL0Lubv07ncInTOhQi0Vx4xbhUHeGqxGmmBoCRd8beHKkk2IXk8OBuqhSFo6y9IJiDSVi4V6_VdWQx8w24XO_oHd5aDQAXVgOpTAdihXNOKyWSQickEdOVZ_5p8xgd3gpQizvCixWpfhbM9PkylUXkqduqc_9Dh31BkDuXX9PID6K-cBlVt9zYUjtxadLKIuZEh8u3fmZnw7h9wlsE9mz-IM4pEQHFYSo_Tja3d8dyShXNrgdcHB-N246lzf3penXGBcUUGDDMuomJwUsEflyyyhYAm__HlyEP1pknwRmJkW0N9BDRcZsovWonQPbdeQHPeRqBPfm8RenfheRXzPEd-riH-AHm-6_c4dLnJSYE0YKGfYSsM0UyaAtR8Fxtfa4ddEYOhHsVGhpYYZBToitb6Gu5aPOBmBOOLMUMWtzw5RI52k0RHyiA2pVpbExmeBYFxbxjm1VMjYCEn8JmrBNw9t4koCyoYMFJOgb_LAoT7SJvKW1Bhmv9YLf95ht93hsFdLyY9_GeIEbVVr6BQ15tO3qIU27fs8mU3PCm5-AoJXHU0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Fundamentals+of+optimization+techniques+with+algorithms&rft.au=Nayak%2C+Sukanta&rft.date=2020-01-01&rft.pub=Academic+Press&rft.isbn=9780128211267&rft_id=info:doi/10.1016%2FB978-0-12-821126-7.00011-5&rft.externalDocID=BC02006913 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780128211267/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780128211267/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780128211267/sc.gif&client=summon&freeimage=true |

