Digitalization of Legacy Datasets and Machine Learning Regression Yields Insights for Reservoir Property Prediction and Submarine-Fan Evolution: A Subsurface Example From the Lewis Shale, Wyoming
Machine-learning algorithms have long aided in geologic property prediction from well-log data, but are primarily used to classify lithology, facies, formation, and rock types. However, more detailed properties (e.g., porosity, grain size) that are important for evaluating hydrocarbon exploration an...
Gespeichert in:
| Veröffentlicht in: | The Sedimentary record Jg. 20; H. 1 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
13.07.2022
|
| ISSN: | 1543-8740, 1543-8740 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Machine-learning algorithms have long aided in geologic property prediction from well-log data, but are primarily used to classify lithology, facies, formation, and rock types. However, more detailed properties (e.g., porosity, grain size) that are important for evaluating hydrocarbon exploration and development activities, as well as subsurface geothermal, CO 2 sequestration, and hydrological studies have not been a focus of machine-learning predictions. This study focuses on improving machine-learning regression-based workflows for quantitative geological property prediction (porosity, grain size, XRF geochemistry), using a robust dataset from the Dad Sandstone Member of the Lewis Shale in the Green River Basin, Wyoming.
Twelve slabbed cores collected from wells targeting turbiditic sandstones and mudstones of the Dad Sandstone member provide 1212.2 ft. of well-log and core data to test the efficacy of five machine-learning models, ranging in complexity from multivariate linear regression to deep neural networks. Our results demonstrate that gradient-boosted decision-tree models ( e.g. , CatBoost, XGBoost) are flexible in terms of input data completeness, do not require scaled data, and are reliably accurate, with the lowest or second lowest root mean squared error (RMSE) for every test. Deep neural networks, while used commonly for these applications, never achieved lowest error for any of the testing. We also utilize newly collected XRF geochemistry and grain-size data to constrain spatiotemporal sediment routing, sand-mud partitioning, and paleo-oceanographic redox conditions in the Green River Basin.
Test-train dataset splitting traditionally uses randomized inter-well data, but a blind well testing strategy is more applicable to most geoscience applications that aim to predict properties of new, unseen well locations. We find that using inter-well training datasets are more optimistic when applied to blind wells, with a median difference of 0.58 RMSE when predicting grain size in phi units. Using these data and results, we establish a baseline workflow for applying machine-learning regression algorithms to core-based reservoir properties from well-log and core-image data. We hope that our findings and open-source code and datasets released with this paper will serve as a baseline for further research to improve geological property prediction for sustainable earth-resource modeling. |
|---|---|
| AbstractList | Machine-learning algorithms have long aided in geologic property prediction from well-log data, but are primarily used to classify lithology, facies, formation, and rock types. However, more detailed properties (e.g., porosity, grain size) that are important for evaluating hydrocarbon exploration and development activities, as well as subsurface geothermal, CO 2 sequestration, and hydrological studies have not been a focus of machine-learning predictions. This study focuses on improving machine-learning regression-based workflows for quantitative geological property prediction (porosity, grain size, XRF geochemistry), using a robust dataset from the Dad Sandstone Member of the Lewis Shale in the Green River Basin, Wyoming.
Twelve slabbed cores collected from wells targeting turbiditic sandstones and mudstones of the Dad Sandstone member provide 1212.2 ft. of well-log and core data to test the efficacy of five machine-learning models, ranging in complexity from multivariate linear regression to deep neural networks. Our results demonstrate that gradient-boosted decision-tree models ( e.g. , CatBoost, XGBoost) are flexible in terms of input data completeness, do not require scaled data, and are reliably accurate, with the lowest or second lowest root mean squared error (RMSE) for every test. Deep neural networks, while used commonly for these applications, never achieved lowest error for any of the testing. We also utilize newly collected XRF geochemistry and grain-size data to constrain spatiotemporal sediment routing, sand-mud partitioning, and paleo-oceanographic redox conditions in the Green River Basin.
Test-train dataset splitting traditionally uses randomized inter-well data, but a blind well testing strategy is more applicable to most geoscience applications that aim to predict properties of new, unseen well locations. We find that using inter-well training datasets are more optimistic when applied to blind wells, with a median difference of 0.58 RMSE when predicting grain size in phi units. Using these data and results, we establish a baseline workflow for applying machine-learning regression algorithms to core-based reservoir properties from well-log and core-image data. We hope that our findings and open-source code and datasets released with this paper will serve as a baseline for further research to improve geological property prediction for sustainable earth-resource modeling. |
| Author | Martin, Thomas Tadla, Jared Jobe, Zane |
| Author_xml | – sequence: 1 givenname: Thomas orcidid: 0000-0002-4171-0004 surname: Martin fullname: Martin, Thomas – sequence: 2 givenname: Jared surname: Tadla fullname: Tadla, Jared – sequence: 3 givenname: Zane orcidid: 0000-0002-7654-4528 surname: Jobe fullname: Jobe, Zane |
| BookMark | eNptUctOwzAQtBBIQOHCF_iMSLHjpE24VaUFpCIQDyFO0cZZp0apXdlpofweP4YDHBDitCvNzuzszj7ZNtYgIUec9WPO2SljXPbFYCCyLbLH00RE2TBh27_6XbLv_QtjSR7n2R75ONe1bqHR79Bqa6hVdIY1yA09hxY8tp6Cqeg1yLk2GDBwRpua3mHt0PuO8qyxqTy9Ml7X8zCvrAuwR7e22tFbZ5fo2k1osNLya0mneL8qF-CCZjQFQydr26w67IyOOsivnAKJdPIGi2WDdOrsgrbzzsCr9vR-Dg2e0KeNXQQzB2RHQePx8Kf2yON08jC-jGY3F1fj0SwCLtIsKhMoc8wqMRjCUACLMU3TKuYVSsi5YgpRMRgIqESSl7JMBYurJBvmpQCQiRI9wr51pbPeO1SFDK_rXLcOdFNwVnQhFF0IxVcIgXL8h7J0Oty9-W_4Ew7ujjQ |
| CitedBy_id | crossref_primary_10_1007_s13202_024_01925_1 crossref_primary_10_1007_s12145_024_01581_3 crossref_primary_10_1007_s12145_024_01323_5 |
| Cites_doi | 10.1145/1961189.1961199 10.1002/dep2.129 10.2110/jsr.2009.074 10.1002/9781444347166.ch7 10.1111/bre.12259 10.3390/w9090631 10.3389/feart.2021.659611 10.1190/int-2021-0189.1 10.1111/jfr3.12522 10.25080/majora-92bf1922-00a 10.1016/j.marpetgeo.2021.105307 10.2118/198874-ms 10.1016/j.marpetgeo.2010.07.006 10.31582/rmag.mg.57.2.121 10.1016/j.advengsoft.2005.05.002 10.1016/b978-0-12-818597-1.50019-9 10.1306/03261211119 10.1016/j.atmosenv.2008.10.005 10.7717/peerj.453 10.21105/joss.01969 10.1111/j.1365-3091.2012.01353.x 10.1038/s41586-020-2649-2 10.1190/int-2018-0245.1 10.1007/bf00116251 10.3133/gip94 10.2113/gsrocky.44.1.1 10.3354/cr030079 10.5194/gmd-7-1247-2014 10.1130/b31039.1 10.1016/j.earscirev.2009.06.008 10.1109/icsess47205.2019.9040806 10.1130/abs/2020am-354696 10.5281/ZENODO.4351156 10.1145/800248.807361 10.1306/12401031St562471 10.1016/j.earscirev.2015.08.001 10.1016/j.chemgeo.2016.05.025 10.2110/jsr.2016.42 10.1039/c0an00387e 10.1130/b25708.1 10.1016/j.ins.2019.06.005 10.1016/j.oregeorev.2017.10.012 10.1029/2019jb018204 10.1145/965139.807362 10.3133/fs00298 10.15530/urtec-2020-2968 10.1306/d4269008-2b26-11d7-8648000102c1865d 10.1306/212f7f31-2b24-11d7-8648000102c1865d 10.3389/feart.2021.645596 10.1109/icaibd51990.2021.9459061 10.1130/b31549.1 10.2118/204224-pa 10.1111/bre.12252 10.1029/2020eo150184 10.2118/205354-pa 10.1306/948878ca-1704-11d7-8645000102c1865d 10.1190/1.3073760 10.1016/j.tecto.2010.09.006 10.1016/j.marpetgeo.2009.02.012 10.1109/bracis.2016.018 10.1306/13181282m92441 10.1016/j.apgeochem.2016.07.003 10.1145/2939672.2939785 10.1016/bs.agph.2020.08.002 10.1306/5d25cbb3-16c1-11d7-8645000102c1865d 10.1190/tle36030267.1 10.1007/978-94-017-9849-5_4 10.1111/bre.12391 10.1130/g22505.1 10.1130/g20318.1 10.1086/628623 10.1086/622910 10.3233/978-1-61499-649-1-87 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.2110/001c.36638 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1543-8740 |
| ExternalDocumentID | 10_2110_001c_36638 |
| GroupedDBID | 123 2WC AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ KQ8 OK1 OVT RNS RYC ~02 |
| ID | FETCH-LOGICAL-a1358-b4ab9e8d367a73a02e555d21deca91f0feef0a63ad349bcb5302d4879b3aac4f3 |
| ISSN | 1543-8740 |
| IngestDate | Tue Nov 18 20:51:09 EST 2025 Sat Nov 29 07:51:19 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a1358-b4ab9e8d367a73a02e555d21deca91f0feef0a63ad349bcb5302d4879b3aac4f3 |
| ORCID | 0000-0002-7654-4528 0000-0002-4171-0004 |
| OpenAccessLink | https://thesedimentaryrecord.scholasticahq.com/article/36638.pdf |
| ParticipantIDs | crossref_citationtrail_10_2110_001c_36638 crossref_primary_10_2110_001c_36638 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-7-13 |
| PublicationDateYYYYMMDD | 2022-07-13 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-7-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | The Sedimentary record |
| PublicationYear | 2022 |
| References | D.C. Montgomery (ref62) 2021 D.E. Drake (ref26) 1978 David R. Pyles (ref72) 2011; 28 Chester K. Wentworth (ref89) 1922; 30 Roman M. Balabin (ref5) 2011; 136 Emanuele Fontana (ref31) 2010; 494 Mariana L. Olariu (ref64) 2012; 96 Shaofeng Liu (ref51) 2004; 32 R.R. Compton (ref22) 2016 David R. Pyles (ref71) 2007 Cristian R. Carvajal (ref13) 2006; 34 M. Abadi (ref1) 2016 Chih-Chung Chang (ref18) 2011; 2 Vikrant A. Dev (ref24) 2019 Woong Mo Koo (ref45) 2016; 86 R.D. Hettinger (ref35) 2005; DDS-69-D Georgiana Maries (ref56) 2017; 90 A. Bouma (ref9) 1962 D.O. Asquith (ref4) 1975 Andrea Fildani (ref30) 2005; 117 H. Drucker (ref28) 1997; 1 Cristian R. Carvajal (ref14) 2009; 79 J. R. Quinlan (ref73) 1986; 1 T. S. Szwarc (ref83) 2015; 127 Roger M. Slatt (ref79) 2009; 74 Hikmet Kerem Cigizoglu (ref21) 2005; 37 Rafael G. Mantovani (ref55) 2019; 501 D. Sapardina (ref76) 2012 Roger M. Slatt (ref78) 2010; 92 Cristian R. Carvajal (ref12) 2007 Glenn R. Sharman (ref77) 2018; 30 Ross Meyer (ref60) 2020; 5 John H. Williams (ref90) 1998 David R. Pyles (ref70) 2000 D.O. Asquith (ref3) 1970; 54 Justin E. Birdwell (ref7) 2020; 57 Joshua Hicks (ref36) 2009 Renas I. Koshnaw (ref46) 2020; 32 María Bermúdez (ref6) 2019; 12 M.R. Cain (ref11) 1986; 171–181 Cort J. Willmott (ref91) 2005; 30 P. Liashchynskyi (ref50) 2019 Frederick Stumm (ref82) 2017; 9 W. C. Krumbein (ref47) 1938; Vol. 8 Cort J. Willmott (ref92) 2009; 43 Francis E. Eriavbe (ref29) 2019 C. Molnar (ref61) 2022 Thomas Martin (ref57) 2022 Charles R. Harris (ref33) 2020; 585 T. Kluyver (ref43) 2016 Jesse R. Pisel (ref67) 2021; 7 Benjamin Jahic (ref38) 2019 Jina Jeong (ref39) 2020; 125 Tianqi Chen (ref20) 2016 Thomas Martin (ref58) 2021; 9 James E. Hunt (ref37) 2015 Matthew A. Malkowski (ref53) 2016; 129 A. Burkov (ref10) 2020; 1 R.H. Myers (ref63) 1990 F. Pedregosa (ref65) 2011; 12 Rafael Pires de Lima (ref66) 2019; 7 Zane Jobe (ref40) 2021; 19 P. L. Johnson (ref42) 2009; 44 Rafael G. Mantovani (ref54) 2017 R.D. Winn (ref93) 1987; 71 D. Arthur (ref2) 2007 Stéfan Van Der Walt (ref86) 2014; 2014 I. Wallis (ref88) 2009 T. Chai (ref17) 2014; 7 Wes McKinney (ref59) 2010; 1 Alvy Ray Smith (ref80) 1978; 2 Taylor Levon (ref49) 2020 George H. Joblove (ref41) 1978; 12 S. Raschka (ref74) 2018 J. G. Solum (ref81) 2022; 10 Woong Mo Koo (ref44) 2015 Nikki Dijkstra (ref25) 2016; 438 Andrew Curtis (ref23) 2020; 101 PETER J. Talling (ref84) 2012; 59 Cristian R. Carvajal (ref16) 2009; 96 Kelsey E. Young (ref95) 2016; 72 M.D. van Horn (ref87) 1989; 40 Donald R. Lowe (ref52) 1982; Vol. 52 Peter Bormann (ref8) 2020 Jonathan W. Primm (ref68) 2018; 30 Cristian R. Carvajal (ref15) 2012 Bruno Lauper (ref48) 2021; 9 Peter M. Sadler (ref75) 1981; 89 Matt Hall (ref32) 2017; 36 Jizhou Tang (ref85) 2021; 26 Jinyu Zhang (ref96) 2021; 133 L. Prokhorenkova (ref69) 2018; 4 Peter Haughton (ref34) 2009; 26 K. Chawshin (ref19) 2021; 24 W. Adolph Yonkee (ref94) 2015; 150 Chengcheng Zhong (ref97) 2021 Jesper Sören Dramsch (ref27) 2020; 61 |
| References_xml | – year: 2022 ident: ref61 article-title: Interpretable Machine Learning: A Guide for Making Black Box Models Explainable – volume: 1 year: 2020 ident: ref10 article-title: Machine learning engineering – volume: 2 start-page: 1 issn: 2157-6904 issue: 3 year: 2011 ident: ref18 article-title: LIBSVM: A Library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/1961189.1961199 – volume: 7 start-page: 64 issn: 2055-4877 issue: 1 year: 2021 ident: ref67 article-title: Classifying basin-scale stratigraphic geometries from subsurface formation tops with machine learning publication-title: The Depositional Record doi: 10.1002/dep2.129 – volume: 79 start-page: 652 issn: 1527-1404 issue: 9-10 year: 2009 ident: ref14 article-title: Shelf-edge architecture and bypass of sand to deep water: Influence of shelf-edge processes, sea level, and sediment supply publication-title: Journal of Sedimentary Research doi: 10.2110/jsr.2009.074 – start-page: 131 year: 2012 ident: ref15 article-title: Source-to-sink sediment volumes within a tectono-stratigraphic model for a Laramide shelf-to-deep-water basin: Methods and results doi: 10.1002/9781444347166.ch7 – year: 2015 ident: ref44 article-title: Architecture and Evolution of Submarine-Fans, and Coupling with Shelf-Edge Processes in Supply-Dominated Margins: Example from Maastrichtian Washakie Basin – start-page: 1 year: 2009 ident: ref88 article-title: Formatioon Assessment in Geothermal Ussing Wireline Tools – Application and Early Results from the Nggatamarikii Geothermmal Field, New Zealand publication-title: New Zealand Geothermal Workshop 2009 Proceedings – start-page: 159 year: 1975 ident: ref4 article-title: Petroleum Potential of Deeper Lewis Washakie and Sand Wash Basins, Wyoming and Colorado – volume: 1 start-page: 155 year: 1997 ident: ref28 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems – volume: 30 start-page: 426 issn: 0950-091X issue: 3 year: 2018 ident: ref77 article-title: Sediment routing evolution in the North Alpine Foreland Basin, Austria: Interplay of transverse and longitudinal sediment dispersal publication-title: Basin Research doi: 10.1111/bre.12259 – volume: 9 start-page: 1 issn: 2073-4441 issue: 9 year: 2017 ident: ref82 article-title: Delineation of salt water intrusion through use of electromagnetic-induction logging: A case study in Southern Manhattan Island, New York publication-title: Water doi: 10.3390/w9090631 – volume: 9 start-page: 1 issn: 2296-6463 issue: June year: 2021 ident: ref58 article-title: Centimeter-Scale Lithology and Facies Prediction in Cored Wells Using Machine Learning publication-title: Frontiers in Earth Science doi: 10.3389/feart.2021.659611 – volume: 10 issn: 2324-8858 issue: 3 year: 2022 ident: ref81 article-title: Accelerating core characterization and interpretation through deep learning with an application to legacy data sets publication-title: Interpretation doi: 10.1190/int-2021-0189.1 – volume: 12 start-page: 1 issn: 1753-318X issue: S1 year: 2019 ident: ref6 article-title: A rapid flood inundation model for hazard mapping based on least squares support vector machine regression publication-title: Journal of Flood Risk Management doi: 10.1111/jfr3.12522 – volume: 1 start-page: 56 issn: 2575-9752 issue: Scipy year: 2010 ident: ref59 article-title: Data Structures for Statistical Computing in Python publication-title: Proceedings of the 9th Python in Science Conference doi: 10.25080/majora-92bf1922-00a – volume: 133 start-page: 105307 issn: 0264-8172 issue: June year: 2021 ident: ref96 article-title: Applying convolutional neural networks to identify lithofacies of large-n cores from the Permian Basin and Gulf of Mexico: The importance of the quantity and quality of training data publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2021.105307 – year: 2016 ident: ref22 article-title: Geology in the Field – year: 2019 ident: ref29 article-title: Machine learning application to permeability prediction using log & core measurements: A realistic workflow application for reservoir characterization doi: 10.2118/198874-ms – volume: 28 start-page: 675 issn: 0264-8172 issue: 3 year: 2011 ident: ref72 article-title: Defining the concept of stratigraphic grade and applying it to stratal (reservoir) architecture and evolution of the slope-to-basin profile: An outcrop perspective publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2010.07.006 – volume: 57 start-page: 121 issn: 0027-254X issue: 2 year: 2020 ident: ref7 article-title: Mineralogy and lithology of the Upper Cretaceous Niobrara Formation determined by hyperspectral core imaging publication-title: The Mountain Geologist doi: 10.31582/rmag.mg.57.2.121 – volume: 37 start-page: 63 issn: 0965-9978 issue: 2 year: 2005 ident: ref21 article-title: Generalized regression neural network in modelling river sediment yield publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2005.05.002 – start-page: 978 issn: 1570-7946 year: 2019 ident: ref24 article-title: Gradient Boosted Decision Trees for Lithology Classification publication-title: Computer Aided Chemical Engineering doi: 10.1016/b978-0-12-818597-1.50019-9 – volume: 96 start-page: 1931 issn: 0149-1423 issue: 10 year: 2012 ident: ref64 article-title: Deltaic process and architectural evolution during cross-shelf transits, Maastrichtian Fox Hills Formation, Washakie Basin, Wyoming publication-title: AAPG Bulletin doi: 10.1306/03261211119 – volume: 43 start-page: 749 issn: 1352-2310 issue: 3 year: 2009 ident: ref92 article-title: Ambiguities inherent in sums-of-squares-based error statistics publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2008.10.005 – volume: 2014 start-page: 1 issn: 2167-8359 issue: 1 year: 2014 ident: ref86 article-title: Scikit-image: Image processing in python publication-title: PeerJ doi: 10.7717/peerj.453 – volume: 5 start-page: 1969 issn: 2475-9066 issue: 50 year: 2020 ident: ref60 article-title: CoreBreakout: Subsurface Core Images to Depth-Registered Datasets publication-title: Journal of Open Source Software doi: 10.21105/joss.01969 – volume: 59 start-page: 1937 issn: 0037-0746 issue: 7 year: 2012 ident: ref84 article-title: Subaqueous sediment density flows: Depositional processes and deposit types publication-title: Sedimentology doi: 10.1111/j.1365-3091.2012.01353.x – volume: 585 start-page: 357 issn: 0028-0836 issue: 7825 year: 2020 ident: ref33 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 7 start-page: SF27–SF40 issn: 2324-8858 issue: 3 year: 2019 ident: ref66 article-title: Convolutional neural networks as aid in core lithofacies classification publication-title: Interpretation doi: 10.1190/int-2018-0245.1 – year: 2018 ident: ref74 article-title: Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning – year: 1962 ident: ref9 article-title: Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation – volume: 1 start-page: 81 issn: 0885-6125 issue: 1 year: 1986 ident: ref73 article-title: Induction of decision trees publication-title: Machine Learning doi: 10.1007/bf00116251 – issn: 2332-354X year: 2009 ident: ref36 article-title: Core Research Center publication-title: U.S. Geological Survey doi: 10.3133/gip94 – volume: 44 start-page: 1 issn: 1555-7332 issue: 1 year: 2009 ident: ref42 article-title: Concurrent growth of uplifts with dissimilar orientations in the southern green river Basin, wyoming: Implications for paleocene- eocene patterns of foreland shortening publication-title: Rocky Mountain Geology doi: 10.2113/gsrocky.44.1.1 – volume: 12 start-page: 2825 year: 2011 ident: ref65 article-title: Scikit-learn: Machine Learning in Python publication-title: Journal of Machine Learning Research – volume: 30 start-page: 79 issn: 0936-577X issue: 1 year: 2005 ident: ref91 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Climate Research doi: 10.3354/cr030079 – volume: 7 start-page: 1247 issn: 1991-9603 issue: 3 year: 2014 ident: ref17 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature publication-title: Geoscientific Model Development doi: 10.5194/gmd-7-1247-2014 – volume: 127 start-page: 372 issn: 0016-7606 issue: 3-4 year: 2015 ident: ref83 article-title: Interactions between axial and transverse drainage systems in the Late Cretaceous Cordilleran foreland basin: Evidence from detrital zircons in the Straight Cliffs Formation, southern Utah, USA publication-title: Geological Society of America Bulletin doi: 10.1130/b31039.1 – volume: 96 start-page: 221 issn: 0012-8252 issue: 4 year: 2009 ident: ref16 article-title: Sediment supply: The main driver of shelf-margin growth publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2009.06.008 – start-page: 59 year: 2019 ident: ref38 article-title: Software engineering for dataset augmentation using generative adversarial networks publication-title: Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS doi: 10.1109/icsess47205.2019.9040806 – volume: 19 start-page: 15 issn: 0016-7592 issue: 3 year: 2021 ident: ref40 article-title: Sedimentary Graphic Logs: A Toolkit for Digitalization and a Template for Standardized Description publication-title: Geological Society of America Abstracts with Programs doi: 10.1130/abs/2020am-354696 – year: 2020 ident: ref8 article-title: FORCE 2020 Well well log and lithofacies dataset for machine learning competition doi: 10.5281/ZENODO.4351156 – volume: 2 start-page: 12 year: 1978 ident: ref80 article-title: Color gamut transform pairs publication-title: Proceedings of the 5th annual conference on Computer graphics and interactive techniques, SIGGRAPH 1978 doi: 10.1145/800248.807361 – start-page: 485 year: 2007 ident: ref71 article-title: Stratigraphy of the Lewis Shale, Wyoming, USA: applications to understanding shelf-edge to base-of-slope changes in stratigraphic architecture of prograding basin margins publication-title: Atlas of Deep-Water Outcrops doi: 10.1306/12401031St562471 – year: 2007 ident: ref12 article-title: Sediment Volume Partitioning, Topset Processes and Clinoform Architecture. Understanding the Role of Sediment Supply, Sea Level and Delta Types in Shelf Margin Building and Deepwater Sand Bypass: The Lance-Fox Hills-Lewis System in S. Wyoming – volume: 150 start-page: 531 issn: 0012-8252 year: 2015 ident: ref94 article-title: Tectonic evolution of the Sevier and Laramide belts within the North American Cordillera orogenic system publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2015.08.001 – volume: 438 start-page: 58 issn: 0009-2541 year: 2016 ident: ref25 article-title: Vivianite is a key sink for phosphorus in sediments of the Landsort Deep, an intermittently anoxic deep basin in the Baltic Sea publication-title: Chemical Geology doi: 10.1016/j.chemgeo.2016.05.025 – volume: 86 start-page: 613 issn: 1527-1404 issue: 6 year: 2016 ident: ref45 article-title: Coupling between shelf-edge architecture and submarine-fan growth style in a supply-dominated margin publication-title: Journal of Sedimentary Research doi: 10.2110/jsr.2016.42 – volume: 136 start-page: 1703 issn: 0003-2654 issue: 8 year: 2011 ident: ref5 article-title: Support vector machine regression (SVR/LS-SVM)—an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data publication-title: The Analyst doi: 10.1039/c0an00387e – volume: 117 start-page: 1596 issn: 0016-7606 issue: 11 year: 2005 ident: ref30 article-title: Stratigraphic record across a retroarc basin inversion: Rocas Verdes–Magallanes Basin, Patagonian Andes, Chile publication-title: Geological Society of America Bulletin doi: 10.1130/b25708.1 – volume: 501 start-page: 193 issn: 0020-0255 year: 2019 ident: ref55 article-title: A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers publication-title: Information Sciences doi: 10.1016/j.ins.2019.06.005 – volume: 90 start-page: 1 issn: 0169-1368 year: 2017 ident: ref56 article-title: Downhole physical property logging for iron-oxide exploration, rock quality, and mining: An example from central Sweden publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2017.10.012 – volume: 125 start-page: 1 issn: 2169-9313 issue: 2 year: 2020 ident: ref39 article-title: Interpreting the Subsurface Lithofacies at High Lithological Resolution by Integrating Information From Well-Log Data and Rock-Core Digital Images publication-title: Journal of Geophysical Research: Solid Earth doi: 10.1029/2019jb018204 – volume: 12 start-page: 20 issn: 0097-8930 issue: 3 year: 1978 ident: ref41 article-title: Color Spaces for Computer Graphics publication-title: ACM SIGGRAPH Computer Graphics doi: 10.1145/965139.807362 – year: 2022 ident: ref57 article-title: LewisML publication-title: Github: https://github.com/ThomasMGeo/LewisML – volume: 4 start-page: 6638 year: 2018 ident: ref69 article-title: Catboost: Unbiased boosting with categorical features – year: 2000 ident: ref70 article-title: A high-frequency sequence stratigraphic framework for the Lewis shale and Fox Hills sandstone, Great Divide and Washakie basins, Wyoming publication-title: Colorado School of Mines – issn: 2327-6932 year: 1998 ident: ref90 article-title: Advances in Borehole Geophysics for Ground-Water Investigations publication-title: US Geological Survey Bulletin doi: 10.3133/fs00298 – start-page: 1 year: 2020 ident: ref49 article-title: A Multi-Disciplinary Modeling Approach to Determine Economic Viability of Infill Horizontal Well Development in the Green River Basin publication-title: Proceedings of the 8th Unconventional Resources Technology Conference doi: 10.15530/urtec-2020-2968 – volume: Vol. 8 start-page: 84 issn: 1527-1404 issue: 3 year: 1938 ident: ref47 article-title: Size Frequency Distributions of Sediments and the Normal Phi Curve publication-title: SEPM Journal of Sedimentary Research doi: 10.1306/d4269008-2b26-11d7-8648000102c1865d – volume: Vol. 52 start-page: 279 issn: 1527-1404 issue: 1 year: 1982 ident: ref52 article-title: Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents publication-title: Journal of Sedimentary Petrology doi: 10.1306/212f7f31-2b24-11d7-8648000102c1865d – volume: 9 start-page: 1 issn: 2296-6463 issue: May year: 2021 ident: ref48 article-title: Quantification of Lithological Heterogeneity Within Opalinus Clay: Toward a Uniform Subfacies Classification Scheme Using a Novel Automated Core Image Recognition Tool publication-title: Frontiers in Earth Science doi: 10.3389/feart.2021.645596 – start-page: 622 year: 2021 ident: ref97 article-title: Shear Wave Velocity Prediction of Carbonate Reservoirs Based on CatBoost publication-title: 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD) doi: 10.1109/icaibd51990.2021.9459061 – volume: 129 start-page: 1 issn: 0016-7606 issue: 3-4 year: 2016 ident: ref53 article-title: Stratigraphic and provenance variations in the early evolution of the Magallanes-Austral foreland basin: Implications for the role of longitudinal versus transverse sediment dispersal during arc-continent collision publication-title: Geological Society of America Bulletin doi: 10.1130/b31549.1 – volume: 26 start-page: 482 issn: 1086-055X issue: 01 year: 2021 ident: ref85 article-title: A new ensemble machine-learning framework for searching sweet spots in shale reservoirs publication-title: SPE Journal doi: 10.2118/204224-pa – volume: 30 start-page: 249 issn: 0950-091X issue: 2 year: 2018 ident: ref68 article-title: Basin-axial progradation of a sediment supply driven distributive fluvial system in the Late Cretaceous southern Utah foreland publication-title: Basin Research doi: 10.1111/bre.12252 – volume: 101 issn: 2324-9250 year: 2020 ident: ref23 article-title: Tackling 21st century geoscience problems with machine learning publication-title: Eos doi: 10.1029/2020eo150184 – volume: 24 start-page: 341 issn: 1094-6470 issue: 02 year: 2021 ident: ref19 article-title: Classifying lithofacies from textural features in whole core CT-scan images publication-title: SPE Reservoir Evaluation and Engineering doi: 10.2118/205354-pa – volume: 71 start-page: 859 issn: 0149-1423 issue: 7 year: 1987 ident: ref93 article-title: Shallow-water and sub- storm-base deposition of Lewis Shale in Cretaceous Western Interior seaway, south-central Wyoming publication-title: American Association of Petroleum Geologists Bulletin doi: 10.1306/948878ca-1704-11d7-8645000102c1865d – volume: 74 start-page: WA35 issn: 0016-8033 issue: 2 year: 2009 ident: ref79 article-title: Acoustic and petrophysical properties of a clastic deepwater depositional system from lithofacies to architectural elements’ scales publication-title: Geophysics doi: 10.1190/1.3073760 – volume: DDS-69-D year: 2005 ident: ref35 article-title: Lewis total petroleum system of the southwestern Wyoming province, Wyoming, Colorado, and Utah – volume: 494 start-page: 85 issn: 0040-1951 issue: 1-2 year: 2010 ident: ref31 article-title: Depth-shifting and orientation of core data using a core–log integration approach: A case study from ODP–IODP Hole 1256D publication-title: Tectonophysics doi: 10.1016/j.tecto.2010.09.006 – volume: 26 start-page: 1900 issn: 0264-8172 issue: 10 year: 2009 ident: ref34 article-title: Hybrid sediment gravity flow deposits – Classification, origin and significance publication-title: Marine and Petroleum Geology doi: 10.1016/j.marpetgeo.2009.02.012 – start-page: 37 year: 2017 ident: ref54 article-title: Hyper-Parameter Tuning of a Decision Tree Induction Algorithm publication-title: Proceedings - 2016 5th Brazilian Conference on Intelligent Systems, BRACIS 2016 doi: 10.1109/bracis.2016.018 – start-page: 33 year: 1978 ident: ref26 – year: 2016 ident: ref1 article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems publication-title: ArXiv – volume: 92 start-page: 167 year: 2010 ident: ref78 article-title: Calibrating borehole image and dipmeter logs with outcrops and behind-outcrop cores: Case studies and applications to deep-water deposits publication-title: AAPG Memoir doi: 10.1306/13181282m92441 – volume: 72 start-page: 77 issn: 0883-2927 year: 2016 ident: ref95 article-title: A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and in planetary surface exploration publication-title: Applied Geochemistry doi: 10.1016/j.apgeochem.2016.07.003 – start-page: 13 year: 2016 ident: ref20 article-title: XGBoost: A scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining doi: 10.1145/2939672.2939785 – volume: 61 start-page: 1 issn: 0065-2687 year: 2020 ident: ref27 article-title: 70 Years of Machine Learning in Geoscience in Review publication-title: Advances in Geophysics doi: 10.1016/bs.agph.2020.08.002 – volume: 54 start-page: 1184 issn: 0149-1423 issue: 7 year: 1970 ident: ref3 article-title: Depositional Topography and Major Marine Environments, Late Cretaceous, Wyoming publication-title: AAPG Bulletin doi: 10.1306/5d25cbb3-16c1-11d7-8645000102c1865d – volume: 36 start-page: 267 issn: 1070-485X issue: 3 year: 2017 ident: ref32 article-title: Distributed collaborative prediction: Results of the machine learning contest publication-title: The Leading Edge doi: 10.1190/tle36030267.1 – volume: 171–181 year: 1986 ident: ref11 article-title: Depositional environment of Upper Cretaceous Lewis sandstones of the Lewis Shale, Sand Wash Basin, Colorado publication-title: New Interpretations of Northwest Colorado Geology – start-page: 127 issn: 1571-5299 year: 2015 ident: ref37 article-title: Use of Calibrated ITRAX XRF Data in Determining Turbidite Geochemistry and Provenance in Agadir Basin, Northwest African Passive Margin publication-title: Micro-XRF Studies of Sediment Cores doi: 10.1007/978-94-017-9849-5_4 – volume: 32 start-page: 688 issn: 0950-091X issue: 4 year: 2020 ident: ref46 article-title: Sediment routing in the Zagros foreland basin: Drainage reorganization and a shift from axial to transverse sediment dispersal in the Kurdistan region of Iraq publication-title: Basin Research doi: 10.1111/bre.12391 – year: 2021 ident: ref62 article-title: Introduction to Linear Regression Analysis – volume: 40 start-page: 155 year: 1989 ident: ref87 article-title: Hay reservoir field; a submarine fan gas reservoir within the Lewis Shale, Sweetwater County, Wyoming publication-title: United States Guidebook Wyoming Geological Association – volume: 34 start-page: 665 issn: 0091-7613 issue: 8 year: 2006 ident: ref13 article-title: Thick turbidite successions from supply-dominated shelves during sea-level highstand publication-title: Geology doi: 10.1130/g22505.1 – start-page: 1 year: 2019 ident: ref50 article-title: Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS – year: 2012 ident: ref76 article-title: Contrasting Facies in Slope and Basin-floor Deposits that Correspond to Rising and Flat Shelf Edge Trajectories, Lewis Shale, Washakie Basin, Wyoming publication-title: Colorado School of Mines – volume: 32 start-page: 397 issn: 0091-7613 issue: 5 year: 2004 ident: ref51 article-title: Late Cretaceous subsidence in Wyoming: Quantifying the dynamic component publication-title: Geology doi: 10.1130/g20318.1 – volume: 89 start-page: 569 issn: 0022-1376 issue: 5 year: 1981 ident: ref75 article-title: Sediment accumulation rates and the completeness of stratigraphic sections publication-title: The Journal of Geology doi: 10.1086/628623 – volume: 30 start-page: 377 issn: 0022-1376 issue: 5 year: 1922 ident: ref89 article-title: A Scale of Grade and Class Terms for Clastic Sediments publication-title: The Journal of Geology doi: 10.1086/622910 – year: 1990 ident: ref63 article-title: Classical and modern regression with applications (Second) – start-page: 87 year: 2016 ident: ref43 article-title: Jupyter Notebooks—a publishing format for reproducible computational workflows publication-title: Positioning and Power in Academic Publishing: Players, Agents and Agendas - Proceedings of the 20th International Conference on Electronic Publishing, ELPUB 2016 doi: 10.3233/978-1-61499-649-1-87 – start-page: 1027–1035 year: 2007 ident: ref2 article-title: K-means++: The advantages of careful seeding publication-title: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms |
| SSID | ssj0049298 |
| Score | 2.188047 |
| Snippet | Machine-learning algorithms have long aided in geologic property prediction from well-log data, but are primarily used to classify lithology, facies,... |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| Title | Digitalization of Legacy Datasets and Machine Learning Regression Yields Insights for Reservoir Property Prediction and Submarine-Fan Evolution: A Subsurface Example From the Lewis Shale, Wyoming |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1543-8740 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0049298 issn: 1543-8740 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9NAEMdXoYDEBfFUSwGNBBdUDLbXT24VTeGAKiSKKKdo7V1HRsGJnDRNPh_iezGzDzsNPZQDFyuy1naS-Wlmd_2fGcZeyoRLGWYBwit8L0Iv7GVKlV5UhCoUgcQgVOlmE-nJSXZ2ln8eDH67XJjlJG2abLXKZ__V1HgOjU2ps_9g7u6meAI_o9HxiGbH47UMf1SPqRGIza_U7wDUmJq6H4kFhqzF3GorSESpXH1VkuCNjSS2OfhOqrY56Qho5a4LNmiFXruc1i2lFsyoIC-pN2RtO42T_hMjq6BcQu8YfcZwaX-kSX0n_3TeVgK9yHAlqCIxTpltYssndVHPqXK0UTZ_W09_unj6o2f5Cz5MC93b9YHZWeo3010lhA21k96MkBOrBHb9SLVUqDBvZIQVFNgtj1DLY03GqvPSEfeol6AJYlecs6499LcR3o4YtP7VEsugfMNx9pX1cdFpAbbCZSdixOUTXU2qwHKkr73BboZpnOduZW8mBBHOQHVGpvuGpkouXfu2f-7GvGhjgnN6j921KxM4NETdZwPVPGC3P-jOz-uH7NdlrmBageEKHFeAFIDlChxX0HMFhitwXAFyBR1X4LiCnit9x0tcQcfVOziEniqwVAFRBUgVaKpAU_UaLFOP2Nfj4en7j57tAOKJgMeZV0SiyFUmeZKKlAs_VHEcyzCQqhR5UPmVUpUvEi4kj_KiLKgFlsQleF5wIcqo4o_ZTjNt1C4DanwgMQKVeayiJJR5IooEXRHaq0qToNpjr9z_PypteXzq0jIZ_W3nPfaiGzszRWGuGPXkWqP22Z0e8adsZ9Geq2fsVrlc1PP2uQbpD_ZKstQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digitalization+of+Legacy+Datasets+and+Machine+Learning+Regression+Yields+Insights+for+Reservoir+Property+Prediction+and+Submarine-Fan+Evolution%3A+A+Subsurface+Example+From+the+Lewis+Shale%2C+Wyoming&rft.jtitle=The+Sedimentary+record&rft.au=Martin%2C+Thomas&rft.au=Tadla%2C+Jared&rft.au=Jobe%2C+Zane&rft.date=2022-07-13&rft.issn=1543-8740&rft.eissn=1543-8740&rft.volume=20&rft.issue=1&rft_id=info:doi/10.2110%2F001c.36638&rft.externalDBID=n%2Fa&rft.externalDocID=10_2110_001c_36638 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8740&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8740&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8740&client=summon |