Analysis of Classifier-Free Guidance Weight Schedulers
Classifier-Free Guidance (CFG) enhances the quality and condition adherence of text-toimage diffusion models. It operates by combining the conditional and unconditional predictions using a fixed weight. However, recent works vary the weights throughout the diffusion process, reporting superior resul...
Saved in:
| Published in: | Transactions on Machine Learning Research Journal |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
[Amherst Massachusetts]: OpenReview.net, 2022
2024
|
| Subjects: | |
| ISSN: | 2835-8856 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Classifier-Free Guidance (CFG) enhances the quality and condition adherence of text-toimage diffusion models. It operates by combining the conditional and unconditional predictions using a fixed weight. However, recent works vary the weights throughout the diffusion process, reporting superior results but without providing any rationale or analysis. By conducting comprehensive experiments, this paper provides insights into CFG weight schedulers. Our findings suggest that simple, monotonically increasing weight schedulers consistently lead to improved performances, requiring merely a single line of code. In addition, more complex parametrized schedulers can be optimized for further improvement, but do not generalize across different models and tasks. |
|---|---|
| AbstractList | Classifier-Free Guidance (CFG) enhances the quality and condition adherence of text-toimage diffusion models. It operates by combining the conditional and unconditional predictions using a fixed weight. However, recent works vary the weights throughout the diffusion process, reporting superior results but without providing any rationale or analysis. By conducting comprehensive experiments, this paper provides insights into CFG weight schedulers. Our findings suggest that simple, monotonically increasing weight schedulers consistently lead to improved performances, requiring merely a single line of code. In addition, more complex parametrized schedulers can be optimized for further improvement, but do not generalize across different models and tasks. |
| Author | Dufour, Nicolas Fernández Abrevaya, Victoria Cani, Marie-Paule Kalogeiton, Vicky Picard, David Andreou, Nefeli Wang, Xi |
| Author_xml | – sequence: 1 givenname: Xi surname: Wang fullname: Wang, Xi organization: Laboratoire d'informatique de l'École polytechnique [Palaiseau] – sequence: 2 givenname: Nicolas orcidid: 0000-0002-1903-5110 surname: Dufour fullname: Dufour, Nicolas organization: Laboratoire d'informatique de l'École polytechnique [Palaiseau] – sequence: 3 givenname: Nefeli surname: Andreou fullname: Andreou, Nefeli organization: University of Cyprus [Nicosia] – sequence: 4 givenname: Marie-Paule orcidid: 0000-0001-7752-9031 surname: Cani fullname: Cani, Marie-Paule organization: Laboratoire d'informatique de l'École polytechnique [Palaiseau] – sequence: 5 givenname: Victoria orcidid: 0000-0002-9829-4929 surname: Fernández Abrevaya fullname: Fernández Abrevaya, Victoria organization: Max Planck Institute for Intelligent Systems [Tübingen] – sequence: 6 givenname: David orcidid: 0000-0002-6296-4222 surname: Picard fullname: Picard, David organization: Laboratoire d'Informatique Gaspard-Monge – sequence: 7 givenname: Vicky orcidid: 0000-0002-7368-6993 surname: Kalogeiton fullname: Kalogeiton, Vicky organization: Laboratoire d'informatique de l'École polytechnique [Palaiseau] |
| BackLink | https://hal.science/hal-04823146$$DView record in HAL |
| BookMark | eNotjk9LwzAYh3OY4Jz7AN569dD6Jnnz71iK24SCBxW9laRNbKC20myDfXsrenrg98CP54asxmn0hNxRKFALAQ92_ojngiFgQTkgrMiaaS5yrYW8JtuUogMBihtEuiayHO1wSTFlU8iqwS46RD_nu9n7bH-KnR1bn737-Nkfs5e2991p8HO6JVfBDslv_7khb7vH1-qQ18_7p6qsc0uZPuZOOApCUYRgtFXYdoxLaZToeAugjALWhc4xtMZZlM65JVt51MH4pTLwDbn_--3t0HzP8cvOl2aysTmUdfO7AWrGKcoz5T-R7Eqa |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 1XC VOOES |
| DOI | 10.48550/arXiv.2404.13040 |
| DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | oai:HAL:hal-04823146v1 |
| GroupedDBID | 1XC ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ M~E VOOES |
| ID | FETCH-LOGICAL-a128t-b5b1057140f98a74cd2366975d3c0079702dfdb24a9ba46bbb4047e48f9eb05f3 |
| ISSN | 2835-8856 |
| IngestDate | Sun Oct 19 06:21:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Generative Model Diffusion Model |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a128t-b5b1057140f98a74cd2366975d3c0079702dfdb24a9ba46bbb4047e48f9eb05f3 |
| ORCID | 0000-0002-7368-6993 0000-0001-7752-9031 0000-0002-1903-5110 0000-0002-6296-4222 0000-0002-9829-4929 |
| OpenAccessLink | http://dx.doi.org/10.48550/arXiv.2404.13040 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04823146v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Transactions on Machine Learning Research Journal |
| PublicationYear | 2024 |
| Publisher | [Amherst Massachusetts]: OpenReview.net, 2022 |
| Publisher_xml | – name: [Amherst Massachusetts]: OpenReview.net, 2022 |
| SSID | ssib050739441 |
| Score | 2.3289576 |
| SecondaryResourceType | preprint |
| Snippet | Classifier-Free Guidance (CFG) enhances the quality and condition adherence of text-toimage diffusion models. It operates by combining the conditional and... |
| SourceID | hal |
| SourceType | Open Access Repository |
| SubjectTerms | Artificial Intelligence Computer Science |
| Title | Analysis of Classifier-Free Guidance Weight Schedulers |
| URI | https://hal.science/hal-04823146 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2835-8856 databaseCode: DOA dateStart: 20220101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssib050739441 providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 2835-8856 databaseCode: M~E dateStart: 20220101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssib050739441 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqhQMX3ojnKkLs0dA6Thwfy-5WRZRqJYroLbITW41U0lWbVnviF_CjmbHrpNvTcuBiRY4T2ZmJ_Xlm_A0hHxI9YEykmhqbMMoznlEdg0DiwsYiLqTtF-6g8ERMp9l8Lq96vT_hLMxuKeo6u7mR1_9V1FAHwsajs_8g7valUAHXIHQoQexQ3knwhzQjLuVlZWHpo6O1QYWoSndG4KeziCIHJyw1y30UfACpsy6HuHMmfHMBlyZwsXbhesGZ3Vnl_cwxrzp8bKFJq3KqRfAukHK1dXeMNcv2iXOfZAoPEVWGYuCiObRMsM4meZZ8Hv5y8BUab6DDi-3GNM3mLLlAOweGynjPB5pf8JXw9IGREyngaJZ5wvHjKd4xsOECtp5Xu4-ARzgmtPaUT7fptMfD7_nVxSiffJl-vX33IAZxPJxAuVBLClMZYF2e7mAvfY8J2GhhIOjvyzA7JejT5C4VattB7yZ3Xfp03CEAK4tgnHdgZfaYPNyLJRp67XhCeqZ-Sh6FDB7RfkJ_RtKgLNHKRkfKEgVlibyyRJ2yPCc_Rpez8zHdZ9KgCvBHQzX8kgDMYTNtZaYEL0oWp6kUSRkXABKl6LPSlppxJbXiqdYahiEMz6w0MHIbvyAn9ao2L0lUDliqrJZCSUxPz_TAlsjwCotDIftq8Iq8h2Hn154rJUf2cvjGOdZ1X_j1XRq9IQ9Qq7y96y05adZb847cL3ZNtVmfOuPJqZPQX2N6X1k |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Classifier-Free+Guidance+Weight+Schedulers&rft.jtitle=Transactions+on+Machine+Learning+Research+Journal&rft.au=Wang%2C+Xi&rft.au=Dufour%2C+Nicolas&rft.au=Andreou%2C+Nefeli&rft.au=Cani%2C+Marie-Paule&rft.date=2024&rft.pub=%5BAmherst+Massachusetts%5D%3A+OpenReview.net%2C+2022&rft.issn=2835-8856&rft_id=info:doi/10.48550%2FarXiv.2404.13040&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04823146v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2835-8856&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2835-8856&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2835-8856&client=summon |