Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System - Biomaterials and Tissues (2nd Edition)

This book reviews how a wide range of materials are modeled and applied. Chapters cover basic concepts for modeling of biomechanics and biotribology, the fundamentals of computational modeling of biomechanics in the musculoskeletal system, finite element modeling in the musculoskeletal system, compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jin, Z, Li, Junyan, Chen, Zhenxian
Format: E-Book
Sprache:Englisch
Veröffentlicht: Chantilly Elsevier 2021
Elsevier Science & Technology
Woodhead Publishing
Ausgabe:2
Schriftenreihe:Woodhead Publishing Series in Biomaterials
Schlagworte:
ISBN:0128195312, 9780128195314
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Inhaltsangabe:
  • Title Page Preface Table of Contents 1. Basic Concepts 2. Fundamentals of Computational Modelling of Biomechanics in the Musculoskeletal System 3. Explicit Finite Element Modelling of Artificial Hip and Knee Joints 4. Introduction to Musculoskeletal Modelling 5. Finite Element Musculoskeletal Modelling Framework for Coupling of Biomechanics and Biotribology 6. Coupling of Musculoskeletal Biomechanics and Joint Biotribology 7. Computational Multiscale Modelling of Soft Tissues Mechanics: Application to Tendons and Ligaments 8. Computational Modelling of Muscle, Tendon, and Ligaments Biomechanics 9. Computational Modelling of Articular Cartilage 10. Computational Modelling of Bone and Bone Remodelling 11. Computational Modelling of Bone Microstructure 12. Geometry Optimization of Scaffolds for Bone Tissue Engineering 13. Three-Dimensional Model for Assessing the Pore Volume of Biomaterials Intended for Implantation 14. Biomechanical Studies of Human Diaphyseal Tibia Fracture Fixation 15. Computational Modelling of Cementless Cup Fixation in Total Hip Arthroplasty (THA) 16. Lubrication Modelling of Hip Joint Implants 17. Modeling of the Knee Joint 18. Computational Modelling of Biomechanics and Biotribology for Artificial Shoulder Joint 19. Computational Modelling of Biomechanics and Biotribology for an Artificial Ankle Joint 20. Computational Modelling of Biomechanics for an Artificial Hip Joint 21. Computational Modelling of Biomechanics and Biotribology for Artificial Knee Joint 22. Computational Biomechanical Modelling of the Spine Index
  • Intro -- Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System: Biomaterials and Tissues -- Copyright -- Contents -- Contributors -- Preface -- Part One: Generic modelling of biomechanics and biotribology -- Chapter 1: Basic concepts -- Chapter 2: Fundamentals of computational modelling of biomechanics in the musculoskeletal system -- 2.1. Computational approach and its importance -- 2.2. Generic computational approach and important considerations -- 2.3. Computational methods and software -- 2.4. Future developments -- 2.5. Sources of further information and references -- References -- Chapter 3: Explicit finite element modelling of artificial hip and knee joints -- 3.1. Introduction -- 3.1.1. Basic concepts of the finite element method -- 3.1.2. Development of FEMs in artificial hip and knee joints -- 3.1.3. Comparison between implicit and explicit FEMs -- 3.2. Models and methods -- 3.2.1. Explicit FE modelling of an artificial hip joint -- 3.2.2. Explicit finite element modelling of an artificial knee joint -- 3.3. Major considerations -- 3.3.1. Compound rotations -- 3.3.2. Parts meshing -- 3.3.3. Convergence of the results -- 3.4. Interpretation and future outlook -- 3.4.1. Discussion of method -- 3.4.2. Summary and interpretation of results -- 3.4.3. Limitations and challenges -- 3.4.4. Outlook -- References -- Chapter 4: Introduction to musculoskeletal modelling -- 4.1. Introduction -- 4.2. Musculoskeletal modelling -- 4.2.1. Theoretical framework and notation -- 4.2.1.1. Kinematic analysis -- Constraint equations -- Perpendicular vectors -- Parallel vectors -- Spherical joint -- Revolute joint -- Universal joint -- Sphere-on-plane and constant ligament length constraints -- Linear and nonlinear rhythms -- Kinematic driver equations -- Kinematically determinate systems
  • 10.2.2.3. Nonlinear microfinite element analysis for the tissue-level trabecular bone yield behaviors -- 10.2.3. Dynamic modelling for the mechanical behaviors of trabecular bone in the intertrochanteric fracture fixation -- 10.2.4. Computational simulation of bone remodelling -- 10.2.4.1. Bone remodelling algorithm -- 10.2.4.2. Numerical approach and example -- 10.3. Results of computational modelling examples -- 10.3.1. Subject-specific QCT image-based nonlinear finite element modelling of proximal femur for bone strength estimation -- 10.3.2. Microfinite element modelling of trabecular bone yield behaviors at the tissue level -- 10.3.3. Dynamic modelling for the mechanical behaviors of trabecular bone in the intertrochanteric fracture fixation -- 10.3.4. Computational simulation of bone remodelling -- 10.4. Conclusion and future trends -- 10.5. Sources of further information and advice -- Acknowledgment -- References -- Chapter 11: Computational modelling of bone microstructure -- 11.1. Introduction -- 11.1.1. Computational simulation of bone fracture -- 11.1.2. Computational simulation of bone adaptation -- 11.1.3. Computational simulation of bone for the design of bionic bone product -- 11.2. Medical imaging of bone microstructure -- 11.2.1. DXA images of bone -- 11.2.2. QCT images of bone -- 11.2.3. HR-pQCT images of bone -- 11.2.4. μCT images of bone -- 11.2.5. MR images of bone -- 11.3. Finite element meshes of bone microstructure -- 11.3.1. Generation of FE meshes of bone microstructure from the clinical CT images -- 11.3.2. Generation of FE meshes of bone microstructure from the μCT images -- 11.4. Material models used for the finite element bone models -- 11.4.1. The simplified linear elastic model for bone tissue -- 11.4.2. The sophisticated material model for bone tissue -- 11.5. Boundary conditions for the finite element bone models
  • Chapter 9: Computational modelling of articular cartilage -- 9.1. Introduction -- 9.1.1. Constituents and properties of articular cartilage -- 9.1.2. Mechanical functions of articular cartilage in diarthrodial joints -- 9.1.3. Mechanical modelling of articular cartilage -- 9.2. Fundamentals in modelling of articular cartilage -- 9.2.1. Biphasic and triphasic models for articular cartilage -- 9.2.2. Fibril-reinforced models for articular cartilage -- 9.2.3. Multiscale modelling -- 9.2.4. Finite element analysis -- 9.3. Comparison and discussion of major theories -- 9.3.1. Monophasic elastic and viscoelastic models -- 9.3.2. Biphasic and triphasic models -- 9.3.3. Fibril-reinforced models -- 9.3.4. Fiber orientation -- 9.3.5. Instantaneous versus equilibrium load responses -- 9.3.6. Fluid-driven and inherent viscoelasticity -- 9.3.7. Nonlinearity, creep, and relaxation -- 9.4. Applications and challenges -- 9.4.1. Three-dimensional, patient-specific joint modelling -- 9.4.2. Tissue growth and remodelling -- 9.4.3. Image-based cartilage evaluation and modelling -- 9.5. Conclusion -- Acknowledgments -- References -- Chapter 10: Computational modelling of bone and bone remodelling -- 10.1. Introduction -- 10.2. Computational modelling examples of bone mechanical properties and bone remodelling -- 10.2.1. Subject-specific QCT image-based nonlinear finite element modelling of proximal femur for bone strength estimation -- 10.2.1.1. QCT scanning -- 10.2.1.2. Three-dimensional modelling of the proximal femur -- 10.2.1.3. Nonlinear constitutive relationship of each bone material -- 10.2.1.4. Nonlinear finite element analysis for femoral strength estimation -- 10.2.2. Microfinite element modelling of trabecular bone yield behaviors at the tissue level -- 10.2.2.1. Micro-CT scanning -- 10.2.2.2. Three-dimensional modelling of a trabecular bone cube
  • 11.5.1. Boundary conditions for simulating the in vitro loading condition
  • Kinematically overdeterminate systems -- 4.2.1.2. Inverse dynamics and muscle recruitment -- 4.2.2. Muscle modelling -- 4.2.2.1. Muscle kinematics -- 4.2.2.2. Muscle kinetics -- 4.2.3. Force-dependent kinematics -- 4.2.4. Cadaver-based template model -- 4.2.5. Mass and inertial properties -- 4.2.6. Geometric scaling of the template model to subject-specific data -- 4.2.6.1. General geometric scaling procedures -- 4.2.6.2. Linear geometric scaling based on anthropometric measurements -- 4.2.6.3. Geometric scaling based on movement data -- 4.2.6.4. Geometric scaling based on medical images -- 4.3. Model validation -- 4.4. Applications examples -- 4.5. Summary and final remarks -- References -- Chapter 5: Finite element musculoskeletal modelling framework for coupling of biomechanics and biotribology -- 5.1. Introduction -- 5.2. Models and methods -- 5.2.1. FE MSK model incorporating a contact model of the knee -- 5.2.2. FE MSK model incorporating contact models of 3D muscles -- 5.3. Major findings -- 5.3.1. FE MSK model incorporating a contact model of the knee -- 5.3.2. FE MSK model incorporating contact models of 3D muscles -- 5.4. Interpretation and future outlook -- 5.4.1. Discussion of methods -- 5.4.2. Interpretation of results and challenges -- 5.4.3. Outlook and summary -- References -- Chapter 6: Coupling of musculoskeletal biomechanics and joint biotribology -- 6.1. Introduction -- 6.2. Sequential MS-FE modelling -- 6.3. Elastic contact-based MS modelling -- 6.4. Concurrent FE-MS modelling -- 6.5. Coupling of joint biotribology and MS -- 6.6. Points for further discussion -- References -- Part Two: Computational modelling of musculoskeletal cells, tissues, and biomaterials -- Chapter 7: Computational multiscale modelling of soft tissues mechanics: Application to tendons and ligaments -- 7.1. Introduction
  • 7.2. Background and preparatory results -- 7.2.1. Collagen fibril model -- 7.2.1.1. Collagen molecules model -- 7.2.1.2. Collagen fibril model -- 7.2.2. Simplified collagen fibril description -- 7.3. Multiscale structural modelling of soft tissues -- 7.3.1. Continuum mechanics framework -- 7.3.2. The representative structural element: Collagen fiber mechanics -- 7.3.2.1. Beam model -- Kinematics -- Statics and equilibrium -- Tangent constitutive behavior -- 7.3.2.2. Along-the-chord tangent modulus -- 7.3.2.3. Evolution of fiber geometry -- 7.3.3. Finite-element implementation -- 7.3.3.1. Solution algorithm -- 7.3.3.2. Implementation issues: Strategies for increasing robustness and accuracy -- 7.4. Results -- 7.4.1. Traction-torsion mechanical response -- 7.4.2. Microstructural and nanoscale defects -- 7.5. Conclusions -- Acknowledgments -- References -- Chapter 8: Computational modelling of muscle, tendon, and ligaments biomechanics -- 8.1. Introduction -- 8.1.1. Fundamental muscle models -- 8.1.2. Applied muscle models -- 8.2. Tendon, ligament, and aponeurosis -- 8.2.1. Structure of tendon, aponeurosis, and ligament -- 8.2.2. Mechanical properties of tendon, aponeurosis, and ligament -- 8.2.3. Structure-function specialization -- 8.2.4. Mechanics of aponeurosis -- 8.3. Muscle biomechanics -- 8.3.1. Introduction to muscle structure and force production -- 8.3.2. Active forces -- 8.3.2.1. Force-velocity relationship -- 8.3.2.2. Force-length relationship -- 8.3.3. Passive force -- 8.3.4. Semiactive force -- 8.3.5. Excitation-contraction coupling -- 8.4. One-dimensional skeletal muscle modelling -- 8.5. Three-dimensional skeletal muscle modelling -- 8.5.1. Architectural gearing by muscle fiber rotation -- 8.5.2. Continuum muscle models -- 8.5.3. Experimental requirements for three-dimensional model validation -- Acknowledgment -- References