RPLLEARN Extending an Autonomous Robot Control Language to Perform

In this paper, we extend the autonomous robot control and plan language RPL with constructs for specifying experiences, control tasks, learning systems and their parameterization, and exploration strategies. Using these constructs, the learning problems can be represented explicitly and transparentl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Autonomous Agents and Multiagent Systems: Proceedings, 3rd International Joint Conference, New York City, New York, 2004. s. 1022 - 1029
Hlavní autoři: Beetz, Michael, Kirsch, Alexandra, Muller, Armin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: Washington, DC, USA IEEE Computer Society 19.07.2004
Edice:ACM Conferences
Témata:
ISBN:9781581138641, 1581138644
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we extend the autonomous robot control and plan language RPL with constructs for specifying experiences, control tasks, learning systems and their parameterization, and exploration strategies. Using these constructs, the learning problems can be represented explicitly and transparently and become executable. With the extended language we rationally reconstruct parts of the AGILO autonomous robot soccer controllers and show the feasibility and advantages of our approach.
Bibliografie:SourceType-Conference Papers & Proceedings-1
ObjectType-Conference Paper-1
content type line 25
ISBN:9781581138641
1581138644
DOI:10.5555/1018411.1018870