Suchergebnisse - vector quantized variational autoencoder~

Andere Suchmöglichkeiten:

  1. 1

    Hierarchical Vector-Quantized Variational Autoencoder and Vector Credibility Mechanism for High-Quality Image Inpainting von Li, Cheng, Xu, Dan, Chen, Kuai

    ISSN: 2079-9292, 2079-9292
    Veröffentlicht: Basel MDPI AG 01.05.2024
    Veröffentlicht in Electronics (Basel) (01.05.2024)
    “… To restore textures at a fine-grained level, we propose an image inpainting method based on a hierarchical VQ-VAE with a vector credibility mechanism …”
    Volltext
    Journal Article
  2. 2

    Quaternion Vector Quantized Variational Autoencoder von Luo, Hui, Liu, Xin, Sun, Jian, Zhang, Yang

    ISSN: 1070-9908, 1558-2361
    Veröffentlicht: New York IEEE 01.01.2025
    Veröffentlicht in IEEE signal processing letters (01.01.2025)
    “… Vector quantized variational autoencoders, as variants of variational autoencoders, effectively capture discrete representations by quantizing continuous latent spaces and are widely used in generative tasks …”
    Volltext
    Journal Article
  3. 3

    Vector-Quantized Variational AutoEncoder for pansharpening von Talbi, Farid, Chikr Elmezouar, Miloud, Boutellaa, Elhocine, Alim, Fatiha

    ISSN: 0143-1161, 1366-5901
    Veröffentlicht: London Taylor & Francis 18.10.2023
    Veröffentlicht in International journal of remote sensing (18.10.2023)
    “… This paper describes a new, efficient, and accurate pansharpening architecture. The Vector-Quantized Variational AutoEncoder (VQ-VAE …”
    Volltext
    Journal Article
  4. 4

    FactorVQVAE: Discrete latent factor model via Vector Quantized Variational Autoencoder von Kim, Namhyoung, Ock, Seung Eun, Song, Jae Wook

    ISSN: 0950-7051
    Veröffentlicht: Elsevier B.V 07.06.2025
    Veröffentlicht in Knowledge-based systems (07.06.2025)
    “… This study introduces FactorVQVAE, the first integration of the Vector Quantized Variational Autoencoder (VQVAE …”
    Volltext
    Journal Article
  5. 5

    Attention-based vector quantized variational autoencoder for anomaly detection by using orthogonal subspace constraints von Yu, Qien, Dai, Shengxin, Dong, Ran, Ikuno, Soichiro

    ISSN: 0031-3203
    Veröffentlicht: Elsevier Ltd 01.08.2025
    Veröffentlicht in Pattern recognition (01.08.2025)
    “… This paper introduces a new framework that uses a vector quantized variational autoencoder (VQVAE …”
    Volltext
    Journal Article
  6. 6

    Frequency enhanced vector quantized variational autoencoder for structural vibration response compression von Xue, Zhilin, An, Yonghui, Ou, Jinping

    ISSN: 0888-3270
    Veröffentlicht: Elsevier Ltd 01.02.2025
    Veröffentlicht in Mechanical systems and signal processing (01.02.2025)
    “… •The frequency enhanced vector quantized variational autoencoder (FEVQVAE) is proposed for structural vibration response compression …”
    Volltext
    Journal Article
  7. 7

    Predicting anatomical variations in radiotherapy with a vector quantized variational autoencoder generative model von Zou, Yue, Li, Zhenhao, Zhang, Menghan, Li, Ziwei, Yin, Xiaojie, Yang, Long, Hu, Weigang, Wang, Jiazhou

    ISSN: 0094-2405, 2473-4209, 2473-4209
    Veröffentlicht: United States 01.09.2025
    Veröffentlicht in Medical physics (Lancaster) (01.09.2025)
    “… Predicting these changes may benefit adaptive radiotherapy (ART) in nasopharyngeal cancer. Purpose This study proposes a vector quantized variational autoencoder (VQ‐VAE …”
    Volltext
    Journal Article
  8. 8

    Data augmentation for Gram-stain images based on Vector Quantized Variational AutoEncoder von V, Shwetha, Prasad, Keerthana, Mukhopadhyay, Chiranjay, Banerjee, Barnini

    ISSN: 0925-2312
    Veröffentlicht: Elsevier B.V 01.10.2024
    Veröffentlicht in Neurocomputing (Amsterdam) (01.10.2024)
    “… In this regard, we investigate a novel application of the Variational AutoEncoder. Specifically, the Vector Quantized Variational AutoEncoder model is trained to generate the Gram-stain images …”
    Volltext
    Journal Article
  9. 9

    S-HR-VQVAE: Sequential Hierarchical Residual Learning Vector Quantized Variational Autoencoder for Video Prediction von Adiban, Mohammad, Stefanov, Kalin, Siniscalchi, Sabato Marco, Salvi, Giampiero

    ISSN: 1520-9210, 1941-0077
    Veröffentlicht: IEEE 2025
    Veröffentlicht in IEEE transactions on multimedia (2025)
    “… (i) a novel hierarchical residual learning vector quantized variational autoencoder (HR-VQVAE), and (ii) a novel autoregressive spatiotemporal predictive model …”
    Volltext
    Journal Article
  10. 10

    SSL-VQ: vector-quantized variational autoencoders for semi-supervised prediction of therapeutic targets across diverse diseases von Namba, Satoko, Li, Chen, Yuyama Otani, Noriko, Yamanishi, Yoshihiro

    ISSN: 1367-4811, 1367-4803, 1367-4811
    Veröffentlicht: England Oxford University Press 04.02.2025
    Veröffentlicht in Bioinformatics (Oxford, England) (04.02.2025)
    “… rare diseases, intractable diseases). Results This study presents a novel machine learning approach using multimodal vector-quantized variational autoencoders (VQ-VAEs …”
    Volltext
    Journal Article
  11. 11

    A Vector Quantized Variational Autoencoder (VQ-VAE) Autoregressive Neural F0 Model for Statistical Parametric Speech Synthesis von Wang, Xin, Takaki, Shinji, Yamagishi, Junichi, King, Simon, Tokuda, Keiichi

    ISSN: 2329-9290
    Veröffentlicht: IEEE 2020
    “… In subjective evaluations, a deep AR model (DAR) outperformed an RNN. Here, we propose a Vector Quantized Variational Autoencoder (VQ-VAE …”
    Volltext
    Journal Article
  12. 12

    466.4-Gbit/s PCS-64QAM wireless transmission enhanced by dual-polarized SISO link and vector-quantized variational autoencoders von Liu, Xiang, Zhang, Jiao, Zhu, Min, Xin, Zhigang, Dong Tong, Wei, Wang, Yunwu, Cai, Yuancheng, Hua, Bingchang, Lei, Mingzheng, Liu, Bo, Yu, Jianjun

    ISSN: 1094-4087, 1094-4087
    Veröffentlicht: United States 12.08.2024
    Veröffentlicht in Optics express (12.08.2024)
    “… ) wireless delivery at 92.5 GHz. This is achieved by employing a likelihood-aware vector-quantized variational autoencoder (VQ-VAE …”
    Volltext
    Journal Article
  13. 13

    Leveraging Vector-Quantized Variational Autoencoder Inner Metrics for Anomaly Detection von Gangloff, Hugo, Pham, Minh-Tan, Courtrai, Luc, Lefevre, Sebastien

    ISSN: 2831-7475
    Veröffentlicht: IEEE 21.08.2022
    Veröffentlicht in International Conference on Pattern Recognition (21.08.2022)
    “… In this context, deep generative models are widely used, in particular Variational Autoencoder (VAE) models. VAEs have been extended to Vector-Quantized VAEs …”
    Volltext
    Tagungsbericht
  14. 14

    Vector Quantized Variational Autoencoder-Based Compressive Sampling Method for Time Series in Structural Health Monitoring von Liang, Ge, Ji, Zhenglin, Zhong, Qunhong, Huang, Yong, Han, Kun

    ISSN: 2071-1050, 2071-1050
    Veröffentlicht: Basel MDPI AG 01.10.2023
    Veröffentlicht in Sustainability (01.10.2023)
    “… The theory of compressive sampling (CS) has revolutionized data compression technology by capitalizing on the inherent sparsity of a signal to enable signal …”
    Volltext
    Journal Article
  15. 15

    Anomaly Detection Through Latent Space Restoration Using Vector Quantized Variational Autoencoders von Marimont, Sergio Naval, Tarroni, Giacomo

    ISSN: 1945-8452
    Veröffentlicht: IEEE 13.04.2021
    “… We propose an out-of-distribution detection method that combines density and restoration-based approaches using Vector-Quantized Variational Auto-Encoders (VQ-VAEs …”
    Volltext
    Tagungsbericht
  16. 16

    Connectionist temporal classification loss for vector quantized variational autoencoder in zero-shot voice conversion von Kang, Xiao, Huang, Hao, Hu, Ying, Huang, Zhihua

    ISSN: 1051-2004, 1095-4333
    Veröffentlicht: Elsevier Inc 01.09.2021
    Veröffentlicht in Digital signal processing (01.09.2021)
    “… •Thorough analysis provides useful insight into representation disentangling. Vector quantized variational autoencoder (VQ-VAE …”
    Volltext
    Journal Article
  17. 17

    SVQ-VAE: Federated-Learning-Based Semantic-Aware Communication for Vehicular Networks von Jin, Zhu, Li, Yundi, Song, Tiecheng, Jia, Wen-Kang, Song, Xiaoqin

    ISSN: 2327-4662, 2327-4662
    Veröffentlicht: Piscataway IEEE 01.12.2025
    Veröffentlicht in IEEE internet of things journal (01.12.2025)
    “… The integration of semantic communication technology into intelligent vehicular networks represents a promising research direction, as it significantly reduces …”
    Volltext
    Journal Article
  18. 18

    Crank: An Open-Source Software for Nonparallel Voice Conversion Based on Vector-Quantized Variational Autoencoder von Kobayashi, Kazuhiro, Huang, Wen-Chin, Wu, Yi-Chiao, Tobing, Patrick Lumban, Hayashi, Tomoki, Toda, Tomoki

    ISSN: 2379-190X
    Veröffentlicht: IEEE 06.06.2021
    “… For implementing the VC software, we used a vector-quantized variational autoencoder (VQVAE). To rapidly examine the effectiveness …”
    Volltext
    Tagungsbericht
  19. 19

    S2VQ-VAE: Semi-Supervised Vector Quantised-Variational AutoEncoder for Automatic Evaluation of Trail Making Test von Tang, Zeshen, Tang, Shiyu, Wang, Haoran, Li, Renren, Zhang, Xiaochen, Zhang, Wei, Yuan, Xiao, Zang, Yaning, Li, Yanping, Zhou, Tian, Li, Yunxia

    ISSN: 2168-2194, 2168-2208, 2168-2208
    Veröffentlicht: United States IEEE 01.08.2024
    Veröffentlicht in IEEE journal of biomedical and health informatics (01.08.2024)
    “… We proposed a novel deep representation learning approach named Semi-Supervised Vector Quantised-Variational AutoEncoder (S2VQ-VAE …”
    Volltext
    Journal Article
  20. 20

    Augmenting Training Data with Vector-Quantized Variational Autoencoder for Classifying RF Signals von Kompella, Srihari Kamesh, Davaslioglu, Kemal, Sagduyu, Yalin E., Kompella, Sastry

    ISSN: 2155-7586
    Veröffentlicht: IEEE 28.10.2024
    Veröffentlicht in MILCOM IEEE Military Communications Conference (28.10.2024)
    “… Radio frequency (RF) communication has been an important part of civil and military communication for decades. With the increasing complexity of wireless …”
    Volltext
    Tagungsbericht