Výsledky vyhledávání - vector quantified variational autoencoder~

  • Zobrazuji výsledky 1 - 4 z 4
Upřesnit hledání
  1. 1

    Investigation of process history and underlying phenomena associated with the synthesis of plutonium oxides using Vector Quantizing Variational Autoencoder Autor Hainje, Connor M., Nizinski, Cody A., Jackson, Shane W., Clark, Richard A., Heller, Forrest D., Schwerdt, Ian J., Buck, Edgar C., Meier, David E., Hagen, Alexander R.

    ISSN: 0169-7439, 1873-3239
    Vydáno: United States Elsevier B.V 15.09.2023
    “…) have shown success in analyzing process parameters of uranium oxides. Among other candidates, a neural network called Vector Quantized Variational Autoencoder (VQ-VAE…”
    Získat plný text
    Journal Article
  2. 2

    Development of a deep learning-based error detection system without error dose maps in the patient-specific quality assurance of volumetric modulated arc therapy Autor Kimura, Yuto, Kadoya, Noriyuki, Oku, Yohei, Jingu, Keiichi

    ISSN: 0449-3060, 1349-9157, 1349-9157
    Vydáno: England Oxford University Press 01.07.2023
    Vydáno v Journal of radiation research (01.07.2023)
    “… As a deep learning model, the variational autoencoder (VAE) was adopted. The anomaly of test data was quantified by calculating Mahalanobis distance based on the feature…”
    Získat plný text
    Journal Article
  3. 3

    Hybrid Deep-Ensemble Network with VAE-Based Augmentation for Imbalanced Tabular Data Classification Autor Lee, Sang-Jeong, Bae, You-Suk

    ISSN: 2076-3417, 2076-3417
    Vydáno: Basel MDPI AG 24.09.2025
    Vydáno v Applied sciences (24.09.2025)
    “…–Bidirectional Long Short-Term Memory (BiLSTM) encoder; variational autoencoder (VAE)-based minority augmentation…”
    Získat plný text
    Journal Article
  4. 4

    Quantitative evaluation model of variable diagnosis for chest X-ray images using deep learning Autor Nakagawa, Shota, Ono, Naoaki, Hakamata, Yukichika, Ishii, Takashi, Saito, Akira, Yanagimoto, Shintaro, Kanaya, Shigehiko

    ISSN: 2767-3170, 2767-3170
    Vydáno: United States Public Library of Science 01.03.2024
    Vydáno v PLOS digital health (01.03.2024)
    “…The purpose of this study is to demonstrate the use of a deep learning model in quantitatively evaluating clinical findings typically subject to uncertain…”
    Získat plný text
    Journal Article