Suchergebnisse - transformer-based conditioning variational autoencoder*
-
1
Trans-cVAE-GAN: Transformer-Based cVAE-GAN for High-Fidelity EEG Signal Generation
ISSN: 2306-5354, 2306-5354Veröffentlicht: Switzerland MDPI AG 26.09.2025Veröffentlicht in Bioengineering (Basel) (26.09.2025)“… , limiting their effectiveness in emotion-related applications. To address these challenges, this research proposes a Transformer-based conditional variational autoencoder …”
Volltext
Journal Article -
2
Video Variational Deep Atmospheric Turbulence Correction
ISSN: 2169-3536, 2169-3536Veröffentlicht: Piscataway IEEE 2024Veröffentlicht in IEEE access (2024)“… We achieve this objective by conditioning the model on features extracted by a variational autoencoder (VAE …”
Volltext
Journal Article -
3
Automatic Medical Report Generation via Latent Space Conditioning and Transformers
ISSN: 2837-0740Veröffentlicht: IEEE 14.11.2023Veröffentlicht in IEEE International Conference on Dependable, Autonomic and Secure Computing (Online) (14.11.2023)“… Our architecture combines Variational Autoencoder (VAE) and Generative Pre-trained Transformer (GPT), to generate high-quality medical reports …”
Volltext
Tagungsbericht -
4
Geometry-invariant abnormality detection
Veröffentlicht: Germany 01.01.2023Veröffentlicht in Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention (01.01.2023)“… We propose a new spatial conditioning mechanism that enables models to adapt and learn from varying data geometries, and apply it to a state-of-the-art Vector-Quantized Variational Autoencoder …”
Weitere Angaben
Journal Article -
5
Data-Driven Modeling for Load Profile Analysis
ISBN: 9798297622869Veröffentlicht: ProQuest Dissertations & Theses 01.01.2025“… This dissertation explores innovative data-driven methodologies for load profile analysis, spanning HVAC load disaggregation, Vision Transformer-based load representation learning for household …”
Volltext
Dissertation -
6
Language Models are Realistic Tabular Data Generators
ISSN: 2331-8422Veröffentlicht: Ithaca Cornell University Library, arXiv.org 22.04.2023Veröffentlicht in arXiv.org (22.04.2023)“… While many generative models from the computer vision domain, such as variational autoencoders or generative adversarial networks, have been adapted for tabular data generation, less research …”
Volltext
Paper

