Výsledky vyhľadávania - theory of computation theory and algorithms for applications domains

Upresniť hľadanie
  1. 1

    HIFI: Explaining and Mitigating Algorithmic Bias Through the Lens of Game-Theoretic Interactions Autor Zhang, Lingfeng, Wang, Zhaohui, Zhang, Yueling, Zhang, Min, Wang, Jiangtao

    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 26.04.2025
    “…Machine Learning (ML) algorithms are increasingly used in decision-making process across various social-critical domains, but they often somewhat inherit and amplify bias from their training data, leading to unfair and unethical outcomes…”
    Získať plný text
    Konferenčný príspevok..
  2. 2

    Twin Graph-Based Anomaly Detection via Attentive Multi-Modal Learning for Microservice System Autor Huang, Jun, Yang, Yang, Yu, Hang, Li, Jianguo, Zheng, Xiao

    ISSN: 2643-1572
    Vydavateľské údaje: IEEE 11.09.2023
    “…Microservice architecture has sprung up over recent years for managing enterprise applications, due to its ability to independently deploy and scale services…”
    Získať plný text
    Konferenčný príspevok..
  3. 3

    Invited: Algorithms and Architectures for Accelerating Long Read Sequence Analysis Autor Gamaarachchi, Hasindu, Liyanage, Kisaru, Parameswaran, Sri

    Vydavateľské údaje: IEEE 09.07.2023
    “…; and three, novel algorithms and domain-specific architectures for rapid in situ analysis of third-generation sequencing data…”
    Získať plný text
    Konferenčný príspevok..
  4. 4

    Optimal Memory Allocation and Scheduling for DMA Data Transfers under the LET Paradigm Autor Pazzaglia, Paolo, Casini, Daniel, Biondi, Alessandro, Natale, Marco Di

    Vydavateľské údaje: IEEE 05.12.2021
    “…The Logical Execution Time (LET) paradigm is increasingly used to achieve predictable communications in modern multicore automotive applications…”
    Získať plný text
    Konferenčný príspevok..
  5. 5

    Making Fair ML Software using Trustworthy Explanation Autor Chakraborty, Joymallya, Peng, Kewen, Menzies, Tim

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 01.09.2020
    “…Machine learning software is being used in many applications (finance, hiring, admissions, criminal justice…”
    Získať plný text
    Konferenčný príspevok..
  6. 6

    ParGNN: A Scalable Graph Neural Network Training Framework on multi-GPUs Autor Gu, Junyu, Li, Shunde, Cao, Rongqiang, Wang, Jue, Wang, Zijian, Liang, Zhiqiang, Liu, Fang, Li, Shigang, Zhou, Chunbao, Wang, Yangang, Chi, Xuebin

    Vydavateľské údaje: IEEE 22.06.2025
    “… over-partition to alleviate load imbalance. Based on the over-partition results, we present a subgraph pipeline algorithm to overlap communication and computation while maintaining the accuracy of GNN training…”
    Získať plný text
    Konferenčný príspevok..
  7. 7

    A Universal Method for Task Allocation on FP-FPS Multiprocessor Systems with Spin Locks Autor Zhao, Shuai, Chen, Nan, Fang, Yinjie, Li, Zhao, Chang, Wanli

    Vydavateľské údaje: IEEE 09.07.2023
    “…Many complex real-time systems, such as increasingly automated vehicles and 5G wireless base stations, contain a large amount of shared resources that must be…”
    Získať plný text
    Konferenčný príspevok..
  8. 8

    Holistic Design towards Resource-Stringent Binary Vector Symbolic Architecture Autor Duan, Shijin, Narkthong, Nuntipat, Luo, Yukui, Ren, Shaolei, Xu, Xiaolin

    Vydavateľské údaje: IEEE 22.06.2025
    “… This paper introduces UniVSA, a co-optimized binary VSA framework for both algorithm and hardware…”
    Získať plný text
    Konferenčný príspevok..
  9. 9

    Multiple-Boundary Clustering and Prioritization to Promote Neural Network Retraining Autor Shen, Weijun, Li, Yanhui, Chen, Lin, Han, Yuanlei, Zhou, Yuming, Xu, Baowen

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 01.09.2020
    “…With the increasing application of deep learning (DL) models in many safety-critical scenarios, effective and efficient DL testing techniques are much in demand to improve the quality of DL models…”
    Získať plný text
    Konferenčný príspevok..
  10. 10

    Quorum: Zero-Training Unsupervised Anomaly Detection using Quantum Autoencoders Autor Ludmir, Jason Zev, Rebello, Sophia, Ruiz, Jacob, Patel, Tirthak

    Vydavateľské údaje: IEEE 22.06.2025
    “…Detecting mission-critical anomalous events and data is a crucial challenge across various industries, including finance, healthcare, and energy. Quantum…”
    Získať plný text
    Konferenčný príspevok..
  11. 11

    Scalable Community Detection Using Quantum Hamiltonian Descent and QUBO Formulation Autor Cheng, Jinglei, Zhou, Ruilin, Gan, Yuhang, Qian, Chen, Liu, Junyu

    Vydavateľské údaje: IEEE 22.06.2025
    “…We present a quantum-inspired algorithm that utilizes Quantum Hamiltonian Descent (QHD…”
    Získať plný text
    Konferenčný príspevok..
  12. 12

    A Multiple Representation Transformer with Optimized Abstract Syntax Tree for Efficient Code Clone Detection Autor Yu, Tianchen, Yuan, Li, Lin, Liannan, He, Hongkui

    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 26.04.2025
    “…Over the past decade, the application of deep learning in code clone detection has produced remarkable results…”
    Získať plný text
    Konferenčný príspevok..
  13. 13

    ACGraph: Accelerating Streaming Graph Processing via Dependence Hierarchy Autor Jiang, Zihan, Mao, Fubing, Guo, Yapu, Liu, Xu, Liu, Haikun, Liao, Xiaofei, Jin, Hai, Zhang, Wei

    Vydavateľské údaje: IEEE 09.07.2023
    “…Streaming graph processing needs to timely evaluate continuous queries. Prior systems suffer from massive redundant computations due to the irregular order of processing vertices influenced by updates…”
    Získať plný text
    Konferenčný príspevok..
  14. 14

    Robin: A Novel Method to Produce Robust Interpreters for Deep Learning-Based Code Classifiers Autor Li, Zhen, Zhang, Ruqian, Zou, Deqing, Wang, Ning, Li, Yating, Xu, Shouhuai, Chen, Chen, Jin, Hai

    ISSN: 2643-1572
    Vydavateľské údaje: IEEE 11.09.2023
    “…Deep learning has been widely used in source code classification tasks, such as code classification according to their functionalities, code authorship…”
    Získať plný text
    Konferenčný príspevok..
  15. 15

    IFHE: Intermediate-Feature Heterogeneity Enhancement for Image Synthesis in Data-Free Knowledge Distillation Autor Chen, Yi, Liu, Ning, Ren, Ao, Yang, Tao, Liu, Duo

    Vydavateľské údaje: IEEE 09.07.2023
    “…Data-free knowledge distillation (DFKD) explores training a compact student network only by a pre-trained teacher without real data. Prevailing DFKD methods…”
    Získať plný text
    Konferenčný príspevok..
  16. 16

    SLIM: a Scalable and Interpretable Light-weight Fault Localization Algorithm for Imbalanced Data in Microservice Autor Ren, Rui, Yang, Jingbang, Yang, Linxiao, Gu, Xinyue, Sun, Liang

    ISSN: 2643-1572
    Vydavateľské údaje: ACM 27.10.2024
    “…) approach to select rules iteratively, maximizing a non-monotone submodular lower bound. Compared with existing fault localization algorithms, our algorithm can adapt…”
    Získať plný text
    Konferenčný príspevok..
  17. 17

    ADAMAS: Adaptive Domain-Aware Performance Anomaly Detection in Cloud Service Systems Autor Gu, Wenwei, Gu, Jiazhen, Liu, Jinyang, Chen, Zhuangbin, Zhang, Jianping, Kuang, Jinxi, Feng, Cong, Yang, Yongqiang, Lyu, Michael R.

    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 26.04.2025
    “…A common practice in the reliability engineering of cloud services involves the collection of monitoring metrics, followed by comprehensive analysis to…”
    Získať plný text
    Konferenčný príspevok..
  18. 18

    MAGIKA: AI-Powered Content-Type Detection Autor Fratantonio, Yanick, Invernizzi, Luca, Farah, Loua, Thomas, Kurt, Zhang, Marina, Albertini, Ange, Galilee, Francois, Metitieri, Giancarlo, Cretin, Julien, Petit-Bianco, Alex, Tao, David, Bursztein, Elie

    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 26.04.2025
    “…, and a variety of security applications. In this paper, we introduce Magika, a novel AI-powered content-type detection tool…”
    Získať plný text
    Konferenčný príspevok..
  19. 19

    Famos: Fault Diagnosis for Microservice Systems Through Effective Multi-Modal Data Fusion Autor Duan, Chiming, Yang, Yong, Jia, Tong, Liu, Guiyang, Liu, Jinbu, Zhang, Huxing, Zhou, Qi, Li, Ying, Huang, Gang

    ISSN: 1558-1225
    Vydavateľské údaje: IEEE 26.04.2025
    “…Accurately diagnosing the fault that causes the failure is crucial for maintaining the reliability of a microservice system after a failure occurs. Mainstream…”
    Získať plný text
    Konferenčný príspevok..
  20. 20

    STREAM: Spatiotemporal Similarity-based Efficient Approximate Median with Tunable Granularity Autor Li, Fenfang, Luo, Huizhang, Liu, Weichen, Chronopoulos, Anthony Theodore, Li, Kenli, Liu, Chubo

    Vydavateľské údaje: IEEE 22.06.2025
    “…The median (MED) is a crucial statistic for measuring the central tendency. However, exact MED computation remains costly, with even state-of-the-art (SOTA…”
    Získať plný text
    Konferenčný príspevok..