Suchergebnisse - supervised clustering-labeling method

  1. 1

    Unsupervised selective labeling for semi-supervised industrial defect detection von Jian Ge, Qin Qin, Shaojing Song, Jinhua Jiang, Zhiwei Shen

    ISSN: 1319-1578
    Veröffentlicht: Springer 01.10.2024
    “… This work proposes the unsupervised spectral clustering labeling (USCL) method to optimize SSL for industrial challenges like defect variability, rarity, and complex distributions …”
    Volltext
    Journal Article
  2. 2

    Diagnosis-informed neuro-subtyping reveals subgroups of autism spectrum disorder with reliable and distinct functional connectivity profiles von Wang, Yaping, Chen, Zehua, Song, Peilun, Lam, Gary Yu-Hin, Kang, Xin, Wong, Patrick C.M., Geng, Xiujuan

    ISSN: 0278-5846, 1878-4216, 1878-4216
    Veröffentlicht: England Elsevier Inc 30.08.2025
    “… We implemented neuro-subtyping of ASD using a semi-supervised clustering method, HeterogeneitY through DiscRiminative Analysis (HYDRA …”
    Volltext
    Journal Article
  3. 3

    Self-supervised based clustering for retinal optical coherence tomography images von Luo, Yilong, Lin, Tian, Lin, Aidi, Mai, Xiaoting, Chen, Haoyu

    ISSN: 1476-5454, 1476-5454
    Veröffentlicht: England 01.02.2025
    Veröffentlicht in Eye (London) (01.02.2025)
    “… ), diabetic macular edema (DME), drusen, and normal fundus. This study employed the Semantic Pseudo Labeling for Image Clustering (SPICE …”
    Weitere Angaben
    Journal Article
  4. 4

    Clustering Algorithms and RAG Enhancing Semi-Supervised Text Classification with Large LLMs von Zhong, Shan, Zeng, Jiahao, Yu, Yongxin, Lin, Bohong

    ISSN: 2364-415X, 2364-4168
    Veröffentlicht: Cham Springer International Publishing 01.11.2025
    Veröffentlicht in International journal of data science and analytics (01.11.2025)
    “… This paper proposes a Clustering, Labeling, then Augmenting framework that significantly enhances performance in Semi-Supervised Text Classification (SSTC …”
    Volltext
    Journal Article
  5. 5

    Emotion Recognition in Gaming Dataset to Reduce Artifacts in the Self-Assessed Labeling Using Semi-Supervised Clustering von Almanza-Conejo, Oscar, Avina-Cervantes, Juan Gabriel, Garcia-Perez, Arturo, Ibarra-Manzano, Mario Alberto

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… ; some are used in treating psychological and physical disorders. This paper presents a method based on electroencephalogram signals analysis to classify multiple emotions recorded from subjects' gameplay seasons …”
    Volltext
    Journal Article
  6. 6

    Discriminant non-stationary signal features’ clustering using hard and fuzzy cluster labeling von Ghoraani, Behnaz, Krishnan, Sridhar

    ISSN: 1687-6180, 1687-6180
    Veröffentlicht: Cham Springer International Publishing 27.11.2012
    Veröffentlicht in EURASIP journal on advances in signal processing (27.11.2012)
    “… , this article presents a novel direction to enhance the discriminatory power of pattern recognition methods …”
    Volltext
    Journal Article
  7. 7

    A self-supervised deep learning framework for seismic facies segmentation von Li, Ming, Yan, Xue-song, Wu, Qing-hua

    ISSN: 0957-4174
    Veröffentlicht: Elsevier Ltd 01.09.2025
    Veröffentlicht in Expert systems with applications (01.09.2025)
    “… Traditional methods rely on costly manual labeling or simplistic clustering, while supervised deep learning struggles with limited labeled data …”
    Volltext
    Journal Article
  8. 8

    Towards Cross-Environment Human Activity Recognition Based on Radar Without Source Data von Cao, Zhongping, Li, Zhenchang, Guo, Xuemei, Wang, Guoli

    ISSN: 0018-9545, 1939-9359
    Veröffentlicht: New York IEEE 01.11.2021
    Veröffentlicht in IEEE transactions on vehicular technology (01.11.2021)
    “… In doing this, it is a challenging task to develop a reliable self-supervised labeling strategy for generating pseudo labels associated with the unlabeled target data, which is crucial to facilitate …”
    Volltext
    Journal Article
  9. 9

    Multi-Objective Progressive Clustering for Semi-Supervised Domain Adaptation in Speaker Verification von Li, Ze, Lin, Yuke, Jiang, Ning, Qin, Xiaoyi, Zhao, Guoqing, Wu, Haiying, Li, Ming

    ISSN: 2379-190X
    Veröffentlicht: IEEE 14.04.2024
    “… In this paper, we propose a novel pseudo-labeling method named Multi-objective Progressive Clustering (MoPC …”
    Volltext
    Tagungsbericht
  10. 10
  11. 11

    LogGzip: Towards log Parsing with lossless compression von Gao, Donghui, Liu, Changjian, Chen, Ningjiang, Hu, Xiaochun

    ISSN: 0164-1212
    Veröffentlicht: Elsevier Inc 01.05.2025
    Veröffentlicht in The Journal of systems and software (01.05.2025)
    “… Supervised learning parsers require labor-intensive manual data labeling. Clustering-based parsers, as an unsupervised method, minimize expert involvement and manual annotation …”
    Volltext
    Journal Article
  12. 12

    Density-based clustering of static and dynamic functional MRI connectivity features obtained from subjects with cognitive impairment von Rangaprakash, D., Odemuyiwa, Toluwanimi, Narayana Dutt, D., Deshpande, Gopikrishna

    ISSN: 2198-4018, 2198-4026
    Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 26.11.2020
    Veröffentlicht in Brain informatics (26.11.2020)
    “… ). These methods generally use supervised classifiers that are sensitive to outliers and require labeling of training data to generate a predictive model …”
    Volltext
    Journal Article
  13. 13

    Spatial-Spectral Bipartite Graph Clustering With Low-Frequency Tensor Regularization for Hyperspectral and LiDAR Data von Cao, Zhe, Lu, Yihang, Xin, Haonan, Yu, Chuanqiang, Wang, Rong, Nie, Feiping

    ISSN: 0196-2892, 1558-0644
    Veröffentlicht: New York IEEE 2025
    “… Unlike supervised methods requiring costly expert annotations, unsupervised clustering eliminates labeling needs, thereby offering an efficient solution for complex scene analysis with reduced deployment costs …”
    Volltext
    Journal Article
  14. 14

    Unsupervised Clustering in Football Analysis: A Color-Segmentation and Lighting Adaptation Approach von Pan, Weiwei, Zhou, Mian, Wang, Jifeng, Su, Jionglong, Stefanidis, Angelos

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2024
    Veröffentlicht in IEEE access (2024)
    “… These methods reduce the effort needed for dataset labeling compared to supervised approaches …”
    Volltext
    Journal Article
  15. 15

    Semi-supervised Emotional Music Generation Method Based on Improved Gaussian Mixture Variational Autoencoders von XU Bei, LIU Tong

    ISSN: 1002-137X
    Veröffentlicht: Editorial office of Computer Science 01.08.2024
    Veröffentlicht in Ji suan ji ke xue (01.08.2024)
    “… emotions.Most existing emotional music generation technologies use the complete supervised methods based on emotion …”
    Volltext
    Journal Article
  16. 16

    Discriminant non-stationary signal features' clustering using hard and fuzzy cluster labeling: Doc 394 von Ghoraani, Behnaz, Krishnan, Sridhar

    ISSN: 1687-6172, 1687-6180
    Veröffentlicht: New York Springer Nature B.V 01.11.2012
    Veröffentlicht in EURASIP journal on advances in signal processing (01.11.2012)
    “… , this article presents a novel direction to enhance the discriminatory power of pattern recognition methods …”
    Volltext
    Journal Article
  17. 17

    Ensemble Feature Selection for Clustering Damage Modes in Carbon Fiber‐Reinforced Polymer Sandwich Composites Using Acoustic Emission von Gulsen, Abdulkadir, Kolukisa, Burak, Caliskan, Umut, Bakir‐Gungor, Burcu, Gungor, Vehbi Cagri

    ISSN: 1438-1656, 1527-2648
    Veröffentlicht: 01.11.2024
    Veröffentlicht in Advanced engineering materials (01.11.2024)
    “… ‐supervised feature selection method ranks feature importance according to these labels. Using the ranking list, unsupervised clustering models are then applied to identify damage modes …”
    Volltext
    Journal Article
  18. 18

    Hyperspectral Image Labeling and Classification Using an Ensemble Semi-Supervised Machine Learning Approach von Manian, Vidya, Alfaro-Mejía, Estefanía, Tokars, Roger P.

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI AG 18.02.2022
    Veröffentlicht in Sensors (Basel, Switzerland) (18.02.2022)
    “… A semi-supervised method for labeling and classification of hyperspectral images is presented …”
    Volltext
    Journal Article
  19. 19

    SSLCNV: A Semi-supervised Learning Framework for Accurate Copy Number Variation Detection von Du, Ruchao, Dong, Jinxin, Jiang, Hua, Qi, Minyong, Zhang, Yuxi, Sun, Ranran, Xu, Mengke

    ISSN: 1867-1462, 1867-1462
    Veröffentlicht: Germany 27.11.2025
    “… To fully leverage the detection results of existing tools and improve the accuracy of CNV detection under complex sequencing conditions, a new method called SSLCNV …”
    Volltext
    Journal Article
  20. 20

    The contrastive learning method in tongue image representation learning and its significance in intelligent diagnosis von Liu, Qi, Xu, Dan-dan, Yang, Peng, Liu, Quan-quan, Xia, Shuai-shuai, Zhang, Miao, Li, Ya-yun, Wang, Chun-bao, Peng, Qing-hua

    ISSN: 2047-2501, 2047-2501
    Veröffentlicht: Cham Springer International Publishing 15.08.2025
    Veröffentlicht in Health information science and systems (15.08.2025)
    “… in a self-supervised manner. Methods We applied clustering contrastive learning (CCL) to the representation learning of tongue images …”
    Volltext
    Journal Article