Suchergebnisse - standard stochastic gradient algorithm

  1. 1

    Particle filtering-based recursive identification for controlled auto-regressive systems with quantised output von Ding, Jie, Chen, Jiazhong, Lin, Jinxing, Jiang, Guoping

    ISSN: 1751-8644, 1751-8652
    Veröffentlicht: The Institution of Engineering and Technology 24.09.2019
    Veröffentlicht in IET control theory & applications (24.09.2019)
    “… In this study, a recursive identification algorithm is proposed based on the auxiliary model principle by modifying the standard stochastic gradient algorithm …”
    Volltext
    Journal Article
  2. 2

    Zeroth-Order Nonconvex Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle Points von Balasubramanian, Krishnakumar, Ghadimi, Saeed

    ISSN: 1615-3375, 1615-3383
    Veröffentlicht: New York Springer US 01.02.2022
    Veröffentlicht in Foundations of computational mathematics (01.02.2022)
    “… to the standard stochastic gradient algorithm using only zeroth-order information. To facilitate zeroth-order optimization in high dimensions, we explore the advantages of structural sparsity assumptions. Specifically …”
    Volltext
    Journal Article
  3. 3

    Convergence Analysis of Weighted Stochastic Gradient Identification Algorithms Based on Latest‐Estimation for ARX Models von Wu, Ai‐Guo, Fu, Fang‐Zhou, Dong, Rui‐Qi

    ISSN: 1561-8625, 1934-6093
    Veröffentlicht: Hoboken Wiley Subscription Services, Inc 01.01.2019
    Veröffentlicht in Asian journal of control (01.01.2019)
    “… In this paper, weighted stochastic gradient (WSG) algorithms for ARX models are proposed by modifying the standard stochastic gradient identification algorithms …”
    Volltext
    Journal Article
  4. 4

    Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems von Feng Ding, Guangjun Liu, Liu, Xiaoping Peter

    ISSN: 0018-9286, 1558-2523
    Veröffentlicht: New York, NY IEEE 01.08.2010
    Veröffentlicht in IEEE transactions on automatic control (01.08.2010)
    “… ) algorithm is proposed to estimate the model parameters with high computational efficiency compared with the standard stochastic gradient (SG) algorithm …”
    Volltext
    Journal Article
  5. 5

    A proportional-integral-derivative-incorporated stochastic gradient descent-based latent factor analysis model von Li, Jinli, Yuan, Ye, Ruan, Tao, Chen, Jia, Luo, Xin

    ISSN: 0925-2312, 1872-8286
    Veröffentlicht: Elsevier B.V 28.02.2021
    Veröffentlicht in Neurocomputing (Amsterdam) (28.02.2021)
    “… ) is frequently adopted as the learning algorithm. However, a standard SGD algorithm updates a decision parameter with the stochastic gradient on the instant loss only, without considering information described by prior updates …”
    Volltext
    Journal Article
  6. 6

    Stochastic Gradient Markov Chain Monte Carlo von Nemeth, Christopher, Fearnhead, Paul

    ISSN: 0162-1459, 1537-274X, 1537-274X
    Veröffentlicht: Alexandria Taylor & Francis 02.01.2021
    Veröffentlicht in Journal of the American Statistical Association (02.01.2021)
    “… In this article, we focus on a particular class of scalable Monte Carlo algorithms, stochastic gradient Markov chain Monte Carlo (SGMCMC …”
    Volltext
    Journal Article
  7. 7

    Almost sure convergence rates of stochastic proximal gradient descent algorithm von Liang, Yuqing, Xu, Dongpo

    ISSN: 0233-1934, 1029-4945
    Veröffentlicht: Taylor & Francis 02.08.2024
    Veröffentlicht in Optimization (02.08.2024)
    “… Stochastic proximal gradient descent (Prox-SGD) is a standard optimization algorithm for solving stochastic composite optimization problems in machine learning …”
    Volltext
    Journal Article
  8. 8

    Guided Stochastic Gradient Descent Algorithm for inconsistent datasets von Sharma, Anuraganand

    ISSN: 1568-4946, 1872-9681
    Veröffentlicht: Elsevier B.V 01.12.2018
    Veröffentlicht in Applied soft computing (01.12.2018)
    “… Stochastic Gradient Descent (SGD) Algorithm, despite its simplicity, is considered an effective and default standard optimization algorithm for machine learning …”
    Volltext
    Journal Article
  9. 9

    Differentially private stochastic gradient descent via compression and memorization von Phong, Le Trieu, Phuong, Tran Thi

    ISSN: 1383-7621, 1873-6165
    Veröffentlicht: Elsevier B.V 01.02.2023
    Veröffentlicht in Journal of systems architecture (01.02.2023)
    “… Our differentially private algorithm, called dp-memSGD for short, converges mathematically at the same rate of 1/T as standard stochastic gradient descent (SGD …”
    Volltext
    Journal Article
  10. 10

    Fastest rates for stochastic mirror descent methods von Hanzely, Filip, Richtárik, Peter

    ISSN: 0926-6003, 1573-2894
    Veröffentlicht: New York Springer US 01.07.2021
    Veröffentlicht in Computational optimization and applications (01.07.2021)
    “… We propose and analyze two new algorithms: Relative Randomized Coordinate Descent (relRCD) and Relative Stochastic Gradient Descent (relSGD …”
    Volltext
    Journal Article
  11. 11

    Linear mixed effects models for non-Gaussian continuous repeated measurement data von Asar, Özgür, Bolin, David, Diggle, Peter J., Wallin, Jonas

    ISSN: 0035-9254, 1467-9876, 1467-9876
    Veröffentlicht: Oxford Wiley 01.11.2020
    “… A standard framework for analysing data of this kind is a linear Gaussian mixed effects model within which the outcome variable can be decomposed into fixed effects, time invariant and time-varying …”
    Volltext
    Journal Article
  12. 12

    Adaptive Stochastic Gradient Descent Optimisation for Image Registration von Klein, Stefan, Pluim, Josien P. W., Staring, Marius, Viergever, Max A.

    ISSN: 0920-5691, 1573-1405
    Veröffentlicht: Boston Springer US 01.03.2009
    Veröffentlicht in International journal of computer vision (01.03.2009)
    “… The proposed adaptive stochastic gradient descent (ASGD) method is compared to a standard, non-adaptive Robbins-Monro (RM) algorithm …”
    Volltext
    Journal Article
  13. 13

    A Nonlinear PID-Incorporated Adaptive Stochastic Gradient Descent Algorithm for Latent Factor Analysis von Li, Jinli, Luo, Xin, Yuan, Ye, Gao, Shangce

    ISSN: 1545-5955, 1558-3783
    Veröffentlicht: IEEE 01.07.2024
    “… from them. However, a standard SGD algorithm updates a latent factor based on the current stochastic gradient only, without the considerations on the past information, making a resultant model suffer from slow convergence …”
    Volltext
    Journal Article
  14. 14

    An Efficient Stochastic Gradient Descent Algorithm to Maximize the Coverage of Cellular Networks von Liu, Yaxi, Huangfu, Wei, Zhang, Haijun, Long, Keping

    ISSN: 1536-1276, 1558-2248
    Veröffentlicht: New York IEEE 01.07.2019
    Veröffentlicht in IEEE transactions on wireless communications (01.07.2019)
    “… A standard gradient descent algorithm and its improved version, namely a Stochastic Gradient Descent (SGD …”
    Volltext
    Journal Article
  15. 15

    A Fuzzy PID-Incorporated Stochastic Gradient Descent Algorithm for Fast and Accurate Latent Factor Analysis von Yuan, Ye, Li, Jinli, Luo, Xin

    ISSN: 1063-6706, 1941-0034
    Veröffentlicht: New York IEEE 01.07.2024
    Veröffentlicht in IEEE transactions on fuzzy systems (01.07.2024)
    “… However, an SGD-based LFA model is often stacked by slow convergence since a standard SGD algorithm updates a single latent factor depending on the stochastic gradient of current instance learning …”
    Volltext
    Journal Article
  16. 16

    Latent Factor-Based Recommenders Relying on Extended Stochastic Gradient Descent Algorithms von Luo, Xin, Wang, Dexian, Zhou, MengChu, Yuan, Huaqiang

    ISSN: 2168-2216, 2168-2232
    Veröffentlicht: New York IEEE 01.02.2021
    “… Stochastic gradient descent (SGD) is a highly efficient algorithm for building an LF model …”
    Volltext
    Journal Article
  17. 17

    Model-free control of nonlinear stochastic systems with discrete-time measurements von Spall, J.C., Cristion, J.A.

    ISSN: 0018-9286
    Veröffentlicht: New York, NY IEEE 01.09.1998
    Veröffentlicht in IEEE transactions on automatic control (01.09.1998)
    “… This paper considers the use of the simultaneous perturbation stochastic approximation algorithm which requires only system measurements …”
    Volltext
    Journal Article
  18. 18

    Stochastic Gradient Made Stable: A Manifold Propagation Approach for Large-Scale Optimization von Mu, Yadong, Liu, Wei, Liu, Xiaobai, Fan, Wei

    ISSN: 1041-4347, 1558-2191
    Veröffentlicht: New York IEEE 01.02.2017
    Veröffentlicht in IEEE transactions on knowledge and data engineering (01.02.2017)
    “… To improve the stability of stochastic gradient, recent years have witnessed the proposal of several semi-stochastic gradient descent algorithms, which distinguish themselves from standard SGD …”
    Volltext
    Journal Article
  19. 19

    Learning Error Refinement in Stochastic Gradient Descent-Based Latent Factor Analysis via Diversified PID Controllers von Li, Jinli, Yuan, Ye, Luo, Xin

    ISSN: 2471-285X, 2471-285X
    Veröffentlicht: Piscataway IEEE 01.10.2025
    “… Unfortunately, a standard SGD algorithm trains a single latent factor relying on the stochastic gradient related to the current learning error only, leading to a slow convergence rate …”
    Volltext
    Journal Article
  20. 20

    Device Specifications for Neural Network Training with Analog Resistive Cross‐Point Arrays Using Tiki‐Taka Algorithms von Byun, Jinho, Kim, Seungkun, Kim, Doyoon, Lee, Jimin, Ji, Wonjae, Kim, Seyoung

    ISSN: 2640-4567, 2640-4567
    Veröffentlicht: Weinheim John Wiley & Sons, Inc 01.05.2025
    Veröffentlicht in Advanced intelligent systems (01.05.2025)
    “… Recently, specialized training algorithms for analog cross‐point array‐based neural network accelerators have been introduced to counteract device non …”
    Volltext
    Journal Article