Suchergebnisse - stacked sparse autoencoder–based deep neural network

  1. 1

    Reliable Fault Diagnosis of Rotary Machine Bearings Using a Stacked Sparse Autoencoder-Based Deep Neural Network von Sohaib, Muhammad, Kim, Jong-Myon

    ISSN: 1070-9622, 1875-9203
    Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
    Veröffentlicht in Shock and vibration (01.01.2018)
    “… In this study, using complex envelope spectra and stacked sparse autoencoder …”
    Volltext
    Journal Article
  2. 2

    Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network von Han, Zhezhe, Hossain, Md. Moinul, Wang, Yuwei, Li, Jian, Xu, Chuanlong

    ISSN: 0306-2619, 1872-9118
    Veröffentlicht: Elsevier Ltd 01.02.2020
    Veröffentlicht in Applied energy (01.02.2020)
    “… •A novel deep learning model is established for predicting combustion stability.•Automatic generation of combustion stability label is achieved …”
    Volltext
    Journal Article
  3. 3

    Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using an Incorporated Utilizing Adaptive Noise Control and a Stacked Sparse Autoencoder-Based Deep Neural Network von Nguyen, Cong Dai, Prosvirin, Alexander E., Kim, Cheol Hong, Kim, Jong-Myon

    ISSN: 1424-8220, 1424-8220
    Veröffentlicht: Switzerland MDPI 22.12.2020
    Veröffentlicht in Sensors (Basel, Switzerland) (22.12.2020)
    “… Gearbox fault diagnosis based on the analysis of vibration signals has been a major research topic for a few decades due to the advantages of vibration …”
    Volltext
    Journal Article
  4. 4

    Stacked Sparse Autoencoder-Based Deep Network for Fault Diagnosis of Rotating Machinery von Qi, Yumei, Shen, Changqing, Wang, Dong, Shi, Juanjuan, Jiang, Xingxing, Zhu, Zhongkui

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 01.01.2017
    Veröffentlicht in IEEE access (01.01.2017)
    “… Thus, a stacked sparse autoencoder (SAE)-based machine fault diagnosis method is proposed in this paper …”
    Volltext
    Journal Article
  5. 5

    Industrial Internet of Things Cyber Threats Detection Through Deep Feature Learning and Stacked Sparse Autoencoder Based Classification von Vijay Anand, R., Magesh, G., Alagiri, I., Brahmam, Madala Guru, Senthil Kumar, C., Kesavan, M., Abdullah, Azween Bin

    ISSN: 2161-3915, 2161-3915
    Veröffentlicht: Chichester, UK John Wiley & Sons, Ltd 01.09.2025
    “… ABSTRACT In recent times, the industrial system has integrated with industrial Internet of Things (IoT) applications to enable the ease of production process …”
    Volltext
    Journal Article
  6. 6

    A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction von Deng, Lei, Fan, Chao, Zeng, Zhiwen

    ISSN: 1471-2105, 1471-2105
    Veröffentlicht: London BioMed Central 28.12.2017
    Veröffentlicht in BMC bioinformatics (28.12.2017)
    “… Results In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based …”
    Volltext
    Journal Article
  7. 7

    Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images von Xing, Chen, Yang, Xiaoquan, Ma, Li

    ISSN: 1687-725X, 1687-7268
    Veröffentlicht: Cairo, Egypt Hindawi Publishing Corporation 01.01.2016
    Veröffentlicht in Journal of sensors (01.01.2016)
    “… Training a deep network for feature extraction and classification includes unsupervised pretraining and supervised fine-tuning …”
    Volltext
    Journal Article
  8. 8

    Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review von Yang, Zheng, Xu, Binbin, Luo, Wei, Chen, Fei

    ISSN: 0263-2241, 1873-412X
    Veröffentlicht: London Elsevier Ltd 15.02.2022
    “… In the past decades, the vigorous development of deep learning (DL) brings new opportunities for IFD, especially the representation learning based on Autoencoder (AE …”
    Volltext
    Journal Article
  9. 9

    An efficient method for autoencoderbased collaborative filtering von Wang, Yi‐Lei, Tang, Wen‐Zhe, Yang, Xian‐Jun, Wu, Ying‐Jie, Chen, Fu‐Ji

    ISSN: 1532-0626, 1532-0634
    Veröffentlicht: Hoboken Wiley Subscription Services, Inc 10.12.2019
    Veröffentlicht in Concurrency and computation (10.12.2019)
    “… With rapid development in deep learning, neural network‐based CF models have gained great attention in the recent years, especially autoencoderbased CF model …”
    Volltext
    Journal Article
  10. 10

    Deep Neural Network Hardware Implementation Based on Stacked Sparse Autoencoder von Coutinho, Maria G. F., Torquato, Matheus F., Fernandes, Marcelo A. C.

    ISSN: 2169-3536, 2169-3536
    Veröffentlicht: Piscataway IEEE 2019
    Veröffentlicht in IEEE access (2019)
    “… Therefore, the objective of this paper is to propose a neural network hardware implementation to be used in deep learning applications …”
    Volltext
    Journal Article
  11. 11

    Breath analysis based early gastric cancer classification from deep stacked sparse autoencoder neural network von Aslam, Muhammad Aqeel, Xue, Cuili, Chen, Yunsheng, Zhang, Amin, Liu, Manhua, Wang, Kan, Cui, Daxiang

    ISSN: 2045-2322, 2045-2322
    Veröffentlicht: London Nature Publishing Group UK 17.02.2021
    Veröffentlicht in Scientific reports (17.02.2021)
    “… In this study, we proposed a new method for feature extraction using a stacked sparse autoencoder to extract the discriminative features from the unlabeled data of breath samples …”
    Volltext
    Journal Article
  12. 12

    Deep neural network for semi-automatic classification of term and preterm uterine recordings von Chen, Lili, Xu, Huoyao

    ISSN: 0933-3657, 1873-2860, 1873-2860
    Veröffentlicht: Elsevier B.V 01.05.2020
    Veröffentlicht in Artificial intelligence in medicine (01.05.2020)
    “… For this purpose, sparse autoencoder (SAE) based deep neural network (SAE-based …”
    Volltext
    Journal Article
  13. 13

    Optimizing MobileNetV2 for improved accuracy in early gastric cancer detection based on dynamic pelican optimizer von Zhou, Guoping, He, Qiyu, Liu, Xiaoli, Kai, Xinghua, Cao, Weikang, Ding, Junning, Zhuang, Bufeng, Xu, Shuhua, Thwin, Myo

    ISSN: 2405-8440, 2405-8440
    Veröffentlicht: England Elsevier Ltd 30.08.2024
    Veröffentlicht in Heliyon (30.08.2024)
    “… The proposed approach utilizes a customized deep learning model called MobileNetV2, which is optimized using a Dynamic variant of the Pelican Optimization Algorithm (DPOA …”
    Volltext
    Journal Article
  14. 14

    SSAE‐MLP: Stacked sparse autoencodersbased multi‐layer perceptron for main bearing temperature prediction of large‐scale wind turbines von Xiao, Xiaocong, Liu, Jianxun, Liu, Deshun, Tang, Yufei, Dai, Juchuan, Zhang, Fan

    ISSN: 1532-0626, 1532-0634
    Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 10.09.2021
    Veröffentlicht in Concurrency and computation (10.09.2021)
    “… To achieve the goal, this paper proposes a novel deep learning approach named stacked sparse autoencoder multi‐layer perceptron (SSAE‐MLP …”
    Volltext
    Journal Article
  15. 15

    A stacked sparse autoencoder based architecture for Punjabi and English spoken language classification using MFCC features von Arora, Vaibhav, Sood, Pulkit, Keshari, Kumar Utkarsh

    Veröffentlicht: Bharati Vidyapeeth, New Delhi as the Organizer of INDIACom - 2016 01.03.2016
    “… A number of shallow architectures namely Soft-max classifier, SVM and deep architectures namely Artificial Neural Networks, SVM with Sparse Auto encoder and Softmax with sparse auto encoder …”
    Volltext
    Tagungsbericht
  16. 16

    Rock mass type prediction for tunnel boring machine using a novel semi-supervised method von Yu, Honggan, Tao, Jianfeng, Qin, Chengjin, Xiao, Dengyu, Sun, Hao, Liu, Chengliang

    ISSN: 0263-2241, 1873-412X
    Veröffentlicht: London Elsevier Ltd 01.07.2021
    “… •A novel semi-supervised framework is proposed to predict geological type ahead of tunnel face.•The semi-supervised framework consists of a feature extractor …”
    Volltext
    Journal Article
  17. 17

    Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning von Sun, Jiedi, Yan, Changhong, Wen, Jiangtao

    ISSN: 0018-9456, 1557-9662
    Veröffentlicht: New York IEEE 01.01.2018
    “… Inspired by the idea of compressed sensing and deep learning, a novel intelligent diagnosis method is proposed for fault identification of rotating machines …”
    Volltext
    Journal Article
  18. 18

    Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia von Kim, Junghoe, Calhoun, Vince D., Shim, Eunsoo, Lee, Jong-Hwan

    ISSN: 1053-8119, 1095-9572
    Veröffentlicht: United States Elsevier Inc 01.01.2016
    Veröffentlicht in NeuroImage (Orlando, Fla.) (01.01.2016)
    “… ). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech …”
    Volltext
    Journal Article
  19. 19

    Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features von Ahmed, H.O.A., Wong, M.L.D., Nandi, A.K.

    ISSN: 0888-3270, 1096-1216
    Veröffentlicht: Berlin Elsevier Ltd 15.01.2018
    Veröffentlicht in Mechanical systems and signal processing (15.01.2018)
    “… •Uses compressive sensing and sparse over-complete feature learning.•Uses the unsupervised sparse autoencoder for learning feature representations …”
    Volltext
    Journal Article
  20. 20

    The Deep Neural Network Based Classification of Fingers Pattern Using Electromyography von Ahmad, Jawad, Butt, Ammar Mohsin, Hussain, Mohsin, Akbar, Muhammad Azeem, Rehman, Waheed Ur

    Veröffentlicht: IEEE 01.05.2018
    “… ) is used to extract a total of 500 feature vectors from five fingers that are used to train an autoencoder based five-layered Deep Neural Network (DNN …”
    Volltext
    Tagungsbericht